publications

For full publication list with citations visit my google scholar profile.
Two Boxes Side by Side Example
Conference
Journal
Workshop
Thesis
Preprint
Book

2024

  1. Automatic dataset shift identification to support root cause analysis of AI performance drift
    Melanie Roschewitz, Raghav Mehta, Charles Jones, and Ben Glocker
    Nov 2024

2023

  1. Uncertainty for Safe Utilization of Machine Learning in Medical Imaging: 5th International Workshop, UNSURE 2023, Held in Conjunction with MICCAI 2023, Vancouver, BC, Canada, October 12, 2023, Proceedings
    Carole H Sudre, Christian F Baumgartner, Adrian Dalca, Raghav Mehta, Chen Qin, and William M Wells
    Nov 2023
  2. Mitigating calibration bias without fixed attribute grouping for improved fairness in medical imaging analysis
    Changjian Shui, Justin Szeto, Raghav MehtaDouglas L Arnold, and Tal Arbel
    In International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Oct 2023
    Early Acceptance
  3. Improving Image-Based Precision Medicine with Uncertainty-Aware Causal Models
    Joshua Durso-Finley, Jean-Pierre Falet, Raghav MehtaDouglas L Arnold, Nick Pawlowski, and Tal Arbel
    In International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Oct 2023
    Student Travel Award (Top 10 paper)
  4. Evaluating the Fairness of Deep Learning Uncertainty Estimates in Medical Image Analysis
    Raghav Mehta, Changjian Shui, and Tal Arbel
    In Medical Imaging with Deep Learning (MIDL) conference, Jul 2023
  5. Debiasing Counterfactuals in the Presence of Spurious Correlations
    Amar Kumar, Nima Fathi, Raghav Mehta, Brennan Nichyporuk, Jean-Pierre R Falet, Sotirios Tsaftaris, and Tal Arbel
    In MICCAI Workshop on Fairness of AI in Medical Imaging (FAIMI), Oct 2023
    Best Oral Presentation Award
    Oral Presentation
  6. Confusing Large Models by Confusing Small Models
    Vı́tor Albiero, Raghav Mehta, Ivan Evtimov, Samuel Bell, Levent Sagun, and Aram Markosyan
    In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops, Oct 2023
    Oral Presentation
  7. Integrating Bayesian Deep Learning Uncertainties in Medical Image Analysis
    Raghav Mehta
    Dec 2023

2022

  1. Rethinking Generalization: The Impact of Annotation Style on Medical Image Segmentation
    Brennan Nichyporuk, Jillian Cardinell, Justin Szeto, Raghav Mehta, Jean-Pierre Falet, Douglas L. ArnoldSotirios A. Tsaftaris, and Tal Arbel
    Machine Learning for Biomedical Imaging (MELBA) Journal, Dec 2022
  2. QU-BraTS: MICCAI BraTS 2020 Challenge on Quantifying Uncertainty in Brain Tumor Segmentation – Analysis of Ranking Scores and Benchmarking Results
    Raghav Mehta, Angelos Filos, Ujjwal Baid, Chiharu Sako, Richard McKinley, Michael Rebsamen, Katrin Dätwyler, Raphael Meier, Piotr Radojewski, Gowtham Krishnan Murugesan, and 82 more authors
    Machine Learning for Biomedical Imaging (MELBA) Journal, Aug 2022
  3. You only need a good embeddings extractor to fix spurious correlations
    Raghav Mehta, Vı́tor Albiero, Li Chen, Ivan Evtimov, Tamar Glaser, Zhiheng Li, and Tal Hassner
    In Proceedings of the IEEE/CVF European Conference on Computer Vision (ECCV) Workshops, Oct 2022
    Oral Presentation
  4. Information gain sampling for active learning in medical image classification
    Raghav Mehta, Changjian Shui, Brennan Nichyporuk, and Tal Arbel
    In International Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging (UNSURE), Oct 2022

2021

  1. Propagating uncertainty across cascaded medical imaging tasks for improved deep learning inference
    Raghav Mehta, Thomas Christinck, Tanya Nair, Aurélie Bussy, Swapna Premasiri, Manuela Costantino, M Mallar Chakravarthy, Douglas L ArnoldYarin Gal, and Tal Arbel
    IEEE Transactions on Medical Imaging (TMI), Oct 2021
  2. Had-net: A hierarchical adversarial knowledge distillation network for improved enhanced tumour segmentation without post-contrast images
    Saverio Vadacchino, Raghav Mehta, Nazanin Mohammadi Sepahvand, Brennan Nichyporuk, James J Clark, and Tal Arbel
    In Medical Imaging with Deep Learning (MIDL) conference, Jul 2021
  3. Cohort bias adaptation in aggregated datasets for lesion segmentation
    Brennan Nichyporuk, Jillian Cardinell, Justin Szeto, Raghav MehtaSotirios TsaftarisDouglas L Arnold, and Tal Arbel
    In International Workshop on Domain Adaptation and Representation Transfer (DART), Oct 2021
    Best Paper Award
    Oral Presentation
  4. Sub-cortical structure segmentation database for young population
    Jayanthi Sivaswamy, Alphin J Thottupattu, Raghav Mehta, R Sheelakumari, Chandrasekharan Kesavadas, and  others
    Nov 2021

2020

  1. Uncertainty evaluation metric for brain tumour segmentation
    Raghav Mehta, Angelos Filos, Yarin Gal, and Tal Arbel
    Medical Imaging with Deep Learning (MIDL) Short Papers, May 2020

2019

  1. Construction of Indian human brain atlas
    Jayanthi Sivaswamy, Alphin J Thottupattu, Raghav Mehta, R Sheelakumari, Chandrasekharan Kesavadas, and  others
    Neurology India (NI) Journal, Jan 2019
  2. Propagating uncertainty across cascaded medical imaging tasks for improved deep learning inference
    Raghav Mehta, Thomas Christinck, Tanya Nair, Paul Lemaitre, Douglas Arnold, and Tal Arbel
    In International Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging (UNSURE)), Oct 2019
    Best Paper Award
    Oral Presentation
  3. Improving pathological structure segmentation via transfer learning across diseases
    Barleen Kaur, Paul Lemaı̂tre, Raghav Mehta, Nazanin Mohammadi Sepahvand, Doina Precup, Douglas Arnold, and Tal Arbel
    In International Workshop on Domain Adaptation and Representation Transfer (DART), Oct 2019

2018

  1. RS-Net: Regression-segmentation 3D CNN for synthesis of full resolution missing brain MRI in the presence of tumours
    Raghav Mehta, and Tal Arbel
    In Third International Workshop on Simulation and Synthesis in Medical Imaging (SASHIMI), Oct 2018
    Oral Presentation
  2. To learn or not to learn features for deformable registration?
    Aabhas Majumdar, Raghav Mehta, and Jayanthi Sivaswamy
    In First International Workshop on Deep Learning Fails (DLF), Oct 2018
    Oral Presentation
  3. 3D U-Net for brain tumour segmentation
    Raghav Mehta, and Tal Arbel
    In 4th International Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes), Oct 2018
  4. Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge
    Spyridon Bakas, Mauricio Reyes, Andras Jakab, Stefan Bauer, Markus Rempfler, Alessandro Crimi, Russell Takeshi Shinohara, Christoph Berger, Sung Min Ha, Martin Rozycki, and 417 more authors
    Nov 2018

2017

  1. BrainSegNet: a convolutional neural network architecture for automated segmentation of human brain structures
    Raghav Mehta, Aabhas Majumdar, and Jayanthi Sivaswamy
    Journal of Medical Imaging (JMI), Apr 2017
  2. M-net: A convolutional neural network for deep brain structure segmentation
    Raghav Mehta, and Jayanthi Sivaswamy
    In 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI), Apr 2017
    Oral Presentation
  3. Population specific template construction and brain structure segmentation using deep learning methods
    Raghav Mehta
    Jul 2017

2016

  1. A hybrid approach to tissue-based intensity standardization of brain MRI images
    Raghav Mehta, and Jayanthi Sivaswamy
    In 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), Apr 2016