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(1) Introduction
❖ Active Learning methods provide a way to select optimal images to 

label from a large set of unlabeled dataset
❖ Goal: Select samples from the unlabeled pool which maximizes the 

Expected Information Gain (EIG) on an unseen evaluation dataset

(2) Proposed Framework

(3) Experiments and Results

❖ Datasets: Multi-class Diabetic Retinopathy (DR) disease stage 
classification and multi-class ISIC Skin lesion classification with high 
class imbalance

❖ Evaluation Metric: ‘macro’ Area Under the Receiver Operating 
Characteristic Curve (ROC AUC) for one-vs-rest classifier

❖ Active learning Implementation Details:
➢ Total Active Learning runs (J): 6
➢ Labeled Set (DL): 600 for ISIC, 500 for DR
➢ Unlabeled Set (DU): 5400 for ISIC, 4500 for DR
➢ Selected Set (DA): 350 for ISIC, 300 for DR 
➢ 5 repetition for both dataset

❖ Comparison against Active Learning Baselines:

❖ Comparison of different Information Gain sampling methods

(4) Conclusion
❖ Proposed an information theoretic active learning samples selection approach
❖ With careful design choices, method can be easily integrated into existing deep learning classifiers
❖ The proposed method achieves 95% of overall performance with only 19% of the training data, while other active learning approaches 

require around 25%.
❖ The proposed method selects more samples from the least representative classes
❖ Useful for medical imaging context with high class imbalance
❖ Future work will explore effect of Information Gain sampling for medical image segmentation tasks
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❖ For high-class imbalance case like medical image classification, the 
predicted softmax probability (P) of the training model is adjusted 
with the class frequencies of the evaluation set

❖ Practical Considerations
➢ EIG calculation requires model update for each image (N) in the 

unlabeled set and for each possible labels (C)
➢ Total N*C model updates
➢ Calculation of evaluation set entropy after each of these updates
➢ Too much computational overhead

❖ Design choices
➢ Model update using only a single gradient step
➢ Deep Learning models have two parts

■ Convolutional Layers: feature extraction
■ Multi-Layer Perceptron: classification

➢ Only update classification layer parameters during EIG calculation
➢ Use Validation set as evaluation set

AEIG selects 
samples from 
minority classes 
(class-3 and class-4) 
sooner compared to 
other methods


