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Motivation
● Deep learning methods for focal pathology segmentation and detection 

require large annotated datasets, which are not generally available.

● Common strategy to build a large dataset: aggregate multiple datasets 

together (‘naive pooling’)

○ May decrease performance due to cohort biases across datasets

● Goal: Train on multi-cohort dataset accounting for individual cohort biases

○ Improved inference results over naive pooling

○ Adaptation to new cohort biases with few samples
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Sources of Cohort Biases

Different 
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3



Aggregating Datasets - Proposed Solution

Source-Conditioned Instance Normalization (SCIN): 

● Condition network using cohort or source-specific instance normalization 

parameters
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Overview

Case Study: 

● Utilize SCIN for Multiple Sclerosis (MS) lesion segmentation and detection

● Cohorts: Several MS clinical trials datasets

Experiments show SCIN can:

● Strategically pool diverse datasets by learning a cohort-specific bias 

● Adapt to new cohort bias by fine-tuning SCIN parameters on a few 

samples
● Model complex cohort biases: e.g. rater ignores small lesions
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Methodology
Overview
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Training

● Train on multi-cohort dataset

● Use SCIN to condition on 

cohort identity 

Testing

● Provide cohort identity 

● Get prediction output with 

bias corresponding to cohort 



● Conditional Instance Normalization (CIN) [1]

● Source-specific instance normalization parameters γ
s
 and β

s
 model cohort 

biases

Methodology
Conditioning

7[1] Vincent D., et al. 2017



Methodology
Architecture

● Learn cohort-specific biases 

by conditioning on cohort 

identity

● Learn cohort-specific 

instance normalization 

parameters
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Experiments
Data - Cohorts
● Trial-A (2011-2015): Late-stage Secondary-Progressive (SPMS), 1000 Samples

● Trial-B (2008-2011): Relapsing Remitting (RRMS), 1000 Samples

● Trial-C (2004-2009): Early-stage SPMS, 500 Samples
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Experiments:
Data

● MRI Sequences

○ FLAIR, PDW, T2, T1, and Gadolinium 

Enhanced T1

● T2 lesion segmentation and detection
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Results
Experiment 1

● Naive pooling decreases performance on individual trials

● SCIN-Pooling achieved a higher DICE compared to Naive-Pooling
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# Model
Train Set Conditioned On Test Performance

Trial-A Trial-B Trial-A Trial-B Trial-A Trial-B

1 Single-Trial ✔ - 0.793 0.689

2 Single-Trial ✔ - 0.715 0.803

3 Naive-Pooling ✔ ✔ - 0.789 0.748

4
SCIN-Pooling ✔ ✔

✔ 0.794 0.700

5 ✔ 0.725 0.797
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Results
Experiment 1

Green: True Positive, Red: False Positive,
Blue: False Negative

Cond.: Trial-A Cond.: Trial-B



Results
Experiment 2

● Naive Pooling Experiment: Train on A&B, Fine-tune only IN parameters on 10 samples

● SCIN Pooling Experiment: Fine-tuned SCIN-pooling model achieves best DICE on new Trial C
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# Model
Fine-Tuned Conditioned On

Test Performance (Trial-C)
On Trial-C Trial-A Trial-B Trial-C

1
Naive-Pooling

- 0.774

2 ✔ - 0.819

3

SCIN-Pooling

✔ 0.763

4 ✔ 0.806

5 ✔ ✔ 0.834



Results
Experiment 3

● Simulate cohort bias where small lesions are missed (i.e. not labeled)

○ Create Missed Small Lesion (MSL) Trial

● DICE Relative to Single Trial Model: Naive-pooling suffers, SCIN-pooling improved
● Detection F1 Relative to Single Trial Model: SCIN successfully learns the cohort bias of MSL
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# Model
Train Set Conditioned On Test Performance (Trial-Orig) 

Trial-Orig Trial-MSL Trial-Orig Trial-MSL Sm Lesion F1 Voxel DICE

1 Single-Trial ✔ - 0.795 0.844

2 Single-Trial ✔ - 0.419 0.837

3 Naive-Pooling ✔ ✔ - 0.790 0.797

4
SCIN-Pooling ✔ ✔

✔ 0.784 0.854

5 ✔ 0.496 0.850



Conclusions

● SCIN enables training on aggregated datasets by accounting for individual cohort 

biases

● SCIN can be used to adapt to a new cohort using few samples
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Thank you and please join us for our discussion and poster session!
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