Cohort Bias Adaptation in Aggregated Datasets for Lesion Segmentation

Brennan Nichyporuk^{1,2}, Jillian Cardinell^{1,2}, Justin Szeto^{1,2}, Raghav Mehta^{1,2}, Sotirios A. Tsaftaris^{3,4}, Douglas L. Arnold^{5,6}, and Tal Arbel^{1,2}

¹Centre for Intelligent Machines, McGill University, Montreal, Canada
²MILA (Quebec Artificial Intelligence Institute), Montreal, Canada
³School of Engineering, University of Edinburgh, Edinburgh, UK
⁴The Alan Turing Institute, London, UK
⁵Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
⁶NeuroRx Research, Montreal, Canada

The Alan Turing Institute

Motivation

- Deep learning methods for focal pathology segmentation and detection require large annotated datasets, which are not generally available.
- Common strategy to build a large dataset: aggregate multiple datasets together ('naive pooling')
 - May *decrease* performance due to cohort biases across datasets
- Goal: Train on multi-cohort dataset accounting for individual cohort biases
 - Improved inference results over naive pooling
 - Adaptation to new cohort biases with few samples

Sources of Cohort Biases

Different Acquisitions

Population Variability

Labelling Style

Observer Bias

Aggregating Datasets - Proposed Solution

Source-Conditioned Instance Normalization (SCIN):

• Condition network using cohort or source-specific instance normalization parameters

Overview

Case Study:

- Utilize SCIN for Multiple Sclerosis (MS) lesion segmentation and detection
- Cohorts: Several MS clinical trials datasets

Experiments show SCIN can:

- Strategically pool diverse datasets by learning a cohort-specific bias
- Adapt to new cohort bias by fine-tuning SCIN parameters on a few samples
- Model complex cohort biases: e.g. rater ignores small lesions

Methodology

Overview

Training

- Train on multi-cohort dataset
- Use SCIN to condition on cohort identity

Testing

- Provide cohort identity
- Get prediction output with bias corresponding to cohort

Methodology

Conditioning

- Conditional Instance Normalization (CIN) [1]
- Source-specific instance normalization parameters γ_s and β_s model cohort biases

$$\operatorname{CIN}(z) = \gamma_s \left(\frac{z - \mu(z)}{\sigma(z)}\right) + \beta_s$$

Methodology

Architecture

- Learn cohort-specific biases by conditioning on cohort identity
- Learn cohort-specific instance normalization parameters

Experiments

Data - Cohorts

- Trial-A (2011-2015): Late-stage Secondary-Progressive (SPMS), 1000 Samples
- Trial-B (2008-2011): Relapsing Remitting (RRMS), 1000 Samples
- Trial-C (2004-2009): Early-stage SPMS, 500 Samples

Experiments:

Data

- MRI Sequences
 - FLAIR, PDW, T2, T1, and Gadolinium Enhanced T1
- T2 lesion segmentation and detection

Results

Experiment 1

- Naive pooling decreases performance on individual trials
- SCIN-Pooling achieved a higher DICE compared to Naive-Pooling

#	Model	Train Set		Conditioned On		Test Performance	
		Trial-A	Trial-B	Trial-A	Trial-B	Trial-A	Trial-B
1	Single-Trial	v		-		0.793	0.689
2	Single-Trial		v	-		0.715	0.803
3	Naive-Pooling	v	v	-		0.789	0.748
4	SCIN-Pooling	~	~	~		0.794	0.700
5					 ✓ 	0.725	0.797

Results Experiment 1

Cond.: Trial-A

Blue: False Negative

Cond.: Trial-B

Results

Experiment 2

- Naive Pooling Experiment: Train on A&B, Fine-tune only IN parameters on 10 samples
- SCIN Pooling Experiment: Fine-tuned SCIN-pooling model achieves best DICE on new Trial C

#	Model	Fine-Tuned	Conditioned On			Test Derfermense (Trial C)	
		On Trial-C	Trial-A	Trial-B	Trial-C	lest Performance (Triai-C)	
1	Naiva Daaling		-			0.774	
2	Naive-Pooling	 ✓ 	_			0.819	
3	SCIN-Pooling		~			0.763	
4				~		0.806	
5		 ✓ 	· · ·		v	0.834	

Results

Experiment 3

- Simulate cohort bias where small lesions are missed (i.e. not labeled)
 - Create Missed Small Lesion (MSL) Trial
- DICE Relative to Single Trial Model: Naive-pooling suffers, SCIN-pooling improved
- Detection F1 Relative to Single Trial Model: SCIN successfully learns the cohort bias of MSL

#	Model	Train Set		Conditioned On		Test Performance (Trial-Orig)	
		Trial-Orig	Trial-MSL	Trial-Orig	Trial-MSL	Sm Lesion F1	Voxel DICE
1	Single-Trial	~		-		0.795	0.844
2	Single-Trial		v	-		0.419	0.837
3	Naive-Pooling	~	~	-		0.790	0.797
4	SCIN-Pooling	~	~	~		0.784	0.854
5					 ✓ 	0.496	0.850

Conclusions

- SCIN enables training on aggregated datasets by accounting for individual cohort biases
- SCIN can be used to adapt to a new cohort using few samples

PROGRESSIVE MS ALLIANCE

CONNECT TO END PROGRESSIVE MS

Montreal Neurological Institute-Hospital

Thank you and please join us for our discussion and poster session!