

Uncertainty Evaluation Metric for Brain Tumour Segmentation

Raghav Mehta¹, Angelos Filos², Yarin Gal², and Tal Arbel¹

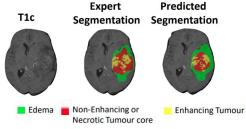
- 1. Probabilistic Vision Group & Medical Imaging Lab, Centre for Intelligent Machines, McGill University, Canada
- 2. Oxford Applied and Theoretical Machine Learning Group, University of Oxford, England

Brain Tumour Segmentation

- Automatic tumour segmentation is of clinical importance
 - Diagnose and staging
 - Outcome prediction
 - Surgical planning

Brain Tumour Segmentation

- Automatic tumour segmentation is of clinical importance
 - Diagnose and staging
 - Outcome prediction
 - Surgical planning
- Deep learning models outperform other methods on popular MICCAI BraTS (brain tumour segmentation) challenge



Predicted

Brain Tumour Segmentation

- Automatic tumour segmentation is of clinical importance
 - Diagnose and staging
 - Outcome prediction
 - Surgical planning

T1c Segmentation Segmentation

Non-Enhancing or Necrotic Tumour core

Expert

- Deep learning models outperform other methods on popular MICCAI BraTS (brain tumour segmentation) challenge
- Tumour Segmentation problem is hard:
 - Large variability in size, shape, position;
 - Subtle boundaries, tumours look like other structures;
 - Sub-tissues can be small (e.g. enhancements);

Predicted

Correct tumour

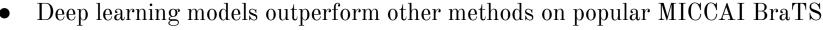
False positives

labels

Segmentation Segmentation

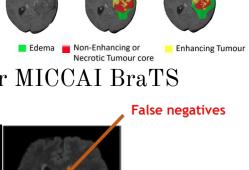
Brain Tumour Segmentation

- Automatic tumour segmentation is of clinical importance
 - Diagnose and staging
 - Outcome prediction
 - Surgical planning



(brain tumour segmentation) challenge

- Tumour Segmentation problem is hard:
 - Large variability in size, shape, position;
 - Subtle boundaries, tumours look like other structures;
 - Sub-tissues can be small (e.g. enhancements);
- Deep learning models can make mistakes!



Expert

T₁c

Whole Tumour Segmentation

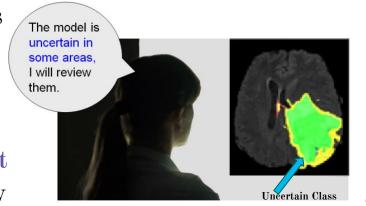
Segmentation of Brain Tumours - Uncertainty

- Errors in results of machine learning algorithms for segmentation of brain tumours can lead to
 - o distrust by clinicians,
 - hesitation in inclusion of machine learning models into clinical workflow



Segmentation of Brain Tumours - Uncertainty

- Errors in results of machine learning algorithms for segmentation of brain tumours can lead to
 - o distrust by clinicians,
 - hesitation in inclusion of machine learning models into clinical workflow
- Uncertainty defining confidence in results permit clinical review bring clinician into the workflow



Segmentation of Brain Tumours - Uncertainty

- Errors in results of machine learning algorithms for segmentation of brain tumours can lead to
 - o distrust by clinicians,
 - hesitation in inclusion of machine learning models into clinical workflow
- Uncertainty defining confidence in results permit clinical review bring clinician into the workflow
- **Bayesian Deep Learning** is useful for getting uncertainty ^{1,2,3}

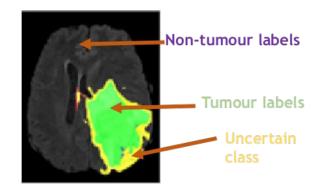
³ Lakshminarayanan et al., "Simple and scalable predictive uncertainty estimation using deep ensembles.", NeurIPS 2017.

¹ Gal and Ghahramani, "Dropout as a Bayesian approximation: Representing model uncertainty in deep learning.", ICML 2016.

² Kohl et al., "A probabilistic u-net for segmentation of ambiguous images.", NeurIPS 2018.

Uncertainty Analysis: Clinical Adoption

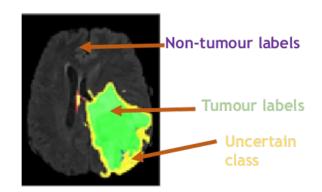
Goal: Uncertainty to enable clinicians, radiologists, surgeons to focus on reviewing the most uncertain predictions and trusting the most confident predictions



Uncertainty Analysis: Clinical Adoption

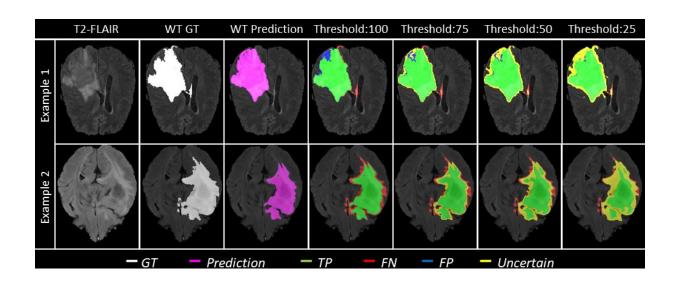
Goal: Uncertainty to enable clinicians, radiologists, surgeons to focus on reviewing the most uncertain predictions and trusting the most confident predictions

Uncertainty metric <u>must</u> have the following properties:



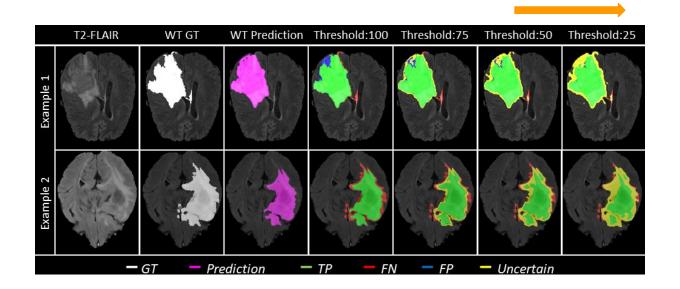
Quantification of Uncertainty for BraTS

Compute the uncertainty of a model at each voxel



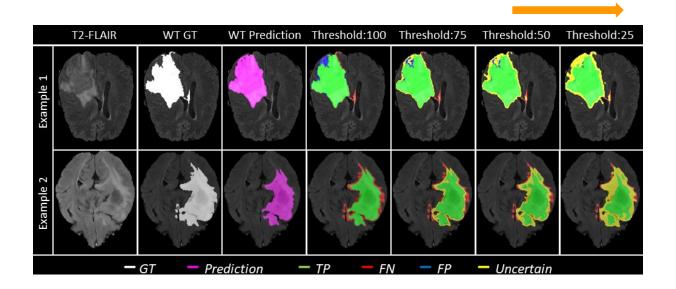
Quantification of Uncertainty for BraTS

- Compute the uncertainty of a model at each voxel
- Filter most uncertain voxels, calculate the metric of interest (e.g. Dice) on the remaining one. Should Improve!



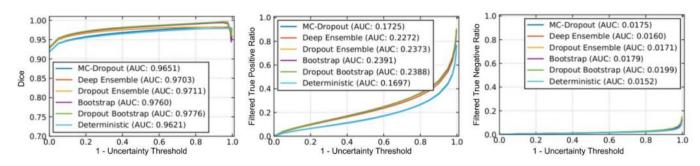
Quantification of Uncertainty for BraTS

- Compute the uncertainty of a model at each voxel
- Filter most uncertain voxels, calculate the metric of interest (e.g. Dice) on the remaining one. Should Improve!
- Not at the expense of filtering out correct predictions!
 - Penalize methods for higher filtering of correct predictions.



Benchmark Results (Entropy - whole tumour)

- 3D U-Net architecture¹
- Brain Tumour Segmentation (BraTS) 2019 ² Training set (335):
- Performances of whole tumour segmentation with the Entropy uncertainty measure³
- Comparison of various uncertainty generation methods:
 - MC-Dropout ⁴
 - Deep Ensemble ⁵
 - Dropout Ensemble ⁶
 - Bootstrap
 - Bootstrap Ensemble



- 1. Cicek et al., MICCAI 2016
- 2. Bakas et al., arXiv:1811.02629, 2018
- Gal et al., ICML 2017

- 4. Gal and Ghahramani, ICML 2016
- 5. Lakshminarayanan et al., NeurIPS 2017
- Smith and Gal, arXiv:1803.08533

Thank You

