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● Deep learning models outperform other methods on popular MICCAI BraTS  
(brain tumour segmentation) challenge

● Tumour Segmentation problem is hard: 
○ Large variability in size, shape, position; 
○ Subtle boundaries, tumours look like other structures; 
○ Sub-tissues can be small (e.g. enhancements);

● Deep learning models can make mistakes!
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Whole Tumour Segmentation 



Segmentation of Brain Tumours - Uncertainty
● Errors in results of machine learning algorithms 

for segmentation of brain tumours can lead to 
○ distrust by clinicians, 
○ hesitation in inclusion of machine learning models into 

clinical workflow
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Segmentation of Brain Tumours - Uncertainty
● Errors in results of machine learning algorithms 

for segmentation of brain tumours can lead to 
○ distrust by clinicians, 
○ hesitation in inclusion of machine learning models into 

clinical workflow
● Uncertainty defining confidence in results permit 

clinical review - bring clinician into the workflow
● Bayesian Deep Learning is useful for getting 

uncertainty 1,2,3

1 Gal and Ghahramani, “Dropout as a Bayesian approximation: Representing model uncertainty in deep learning.”, ICML 2016.
2 Kohl et al., “A probabilistic u-net for segmentation of ambiguous images.”, NeurIPS 2018. 
3 Lakshminarayanan et al., “Simple and scalable predictive uncertainty estimation using deep ensembles.”, NeurIPS 2017.

? ?
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Uncertainty Analysis: Clinical Adoption
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Goal: Uncertainty to enable clinicians, radiologists, surgeons to focus on reviewing the 
most uncertain predictions and trusting the most confident predictions
● Uncertainty metric must have the following 

properties:

Confident predictions

Incorrect predictions

Correct predictions

Higher Uncertainties



Quantification of Uncertainty for BraTS
● Compute the uncertainty of a model at each voxel
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Quantification of Uncertainty for BraTS
● Compute the uncertainty of a model at each voxel
● Filter most uncertain voxels, calculate the metric of interest (e.g. Dice) on the remaining one. Should Improve!
● Not at the expense of filtering out correct predictions!

○ Penalize methods for higher filtering of correct predictions.  
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Benchmark Results (Entropy - whole tumour)
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● 3D U-Net architecture 1

● Brain Tumour Segmentation (BraTS) 2019 2 Training set (335): 
● Performances of whole tumour segmentation with the Entropy uncertainty measure 3

● Comparison of various uncertainty generation methods:
○ MC-Dropout 4

○ Deep Ensemble 5

○ Dropout Ensemble 6

○ Bootstrap
○ Bootstrap Ensemble

   4.         Gal and Ghahramani, ICML 2016
   5.         Lakshminarayanan et al., NeurIPS 2017
   6.         Smith and Gal, arXiv:1803.08533@QUBraTS

1. Cicek et al., MICCAI 2016
2. Bakas et al., arXiv:1811.02629, 2018
3. Gal et al., ICML 2017
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