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1) Introduction (3) Experiments and Results

* Deep learning models can take ‘shortcut paths to optimization’ by < Performance of ERM and DRO based classifiers across all
latching onto spurious correlation prevalent in the dataset. subgroups
** Explainability: verifies model is ‘right for right reasons’. Dataset 1 Dataset 2
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explanations in presence of spurious correlations. '

(2) proposed Framework *¢ Qualitative Comparison of Counterfactuals with ERM and
DRO classifiers

¢ Dataset Preparation: Spurious Correlation (visual artifact) is prevalent in

majority of patients. Pathology  Artifact
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Sick * ERM : Significant changes in artifact; DRO: No change in artifact
* ERM : No changes in disease pathology; DRO: Significant changes in disease pathology
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ERM: Empirical Risk Minimization; DRO: Distributionally Robust Optimization Dataset 1 Dataset 2
s Cycle-GAN for Counterfactual Image Synthesis
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Lower SCLS score indicates DRO based classifier does not latch
S e, Discriminator s onto the spurious correlation.
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» Evaluating Counterfactual Images

Standard Metrics: Structural Similarly Index Measure (SSIM), Actionability and |*%* Safe deployment of black-box models requires
Counterfactual Prediction Gain (CPG) explainability to disclose when the classifier is basing its

predictions on spurious correlations

% First integrated end-to-end training strategy for
generating unbiased counterfactual images, leveraging
a DRO classifier to enhance generalization

New Proposed Metric: Spurious Correlation Latching Score (SCLS) measures the
presence of spurious correlation in the synthesized image using a detector, d.
SCLS = |d(x) — d(xcf)|
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