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Medical Imaging and Deep Learning
● Problem: Acquiring annotations for data used to train deep learning models is 

time-consuming
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● Problem: Acquiring annotations for data used to train deep learning models is 
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● Solution: Active Learning methods to select most useful data for annotation
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Active Learning Sample Selection
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● Uncertainty Based
○ Least confidence [8]

○ Maximum entropy [9]

○ Smallest margin [10]

○ Minimum expected generalization loss [11]

○ Deep Bayesian active learning [12]

● Representation Based
○ CoreSet [13]

○ Variational Adversarial Active Learning [14]

○ Reinforcement Learning [15]

● Combination of both Uncertainty and Representation based [16,17]



Uncertainty Based Sample Selection
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● Pros
○ Indicates the samples which are hardest for the current model to classify
○ Useful in medical imaging context where there is a high class imbalance

● Cons
○ Doesnʼt convey the source of uncertainty

■ Classes that are source of confusion
○ No information about how the addition of the sampleʼs labels will influence the downstream 

performance



Information Gain Sampling for AL
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● Expected Information Gain (EIG)
○ EIG (X; Y) measures the reduction in the entropy H of a random variable, X, by observing the state 

of another random variable, Y

● In active learning context, EIG measure the reduction in the entropy of the 
predicted labels of the evaluation set, if we have access to the true state of an 
image in the unlabeled set
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● Practical Consideration
○ EIG calculation requires model update for each image (N) in the unlabeled set and for each 

possible labels (C)
○ Total N*C model updates
○ Calculation of evaluation set entropy after each of these updates
○ Too much computational overhead
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● Practical Consideration
○ EIG calculation requires model update for each image (N) in the unlabeled set and for each 

possible labels (C)
○ Total N*C model updates
○ Calculation of evaluation set entropy after each of these updates
○ Too much computational overhead

● Design choices
○ Model update using only a single gradient step
○ Deep Learning models have two parts

■ Convolutional Layer: feature extraction
■ Multi-Layer Perceptron: classification

○ Only update classification layer parameters during EIG calculation

   



Information Gain Sampling for AL

18

Model

Labeled 
Dataset

Model

● In short, EIG measures difference in the entropy for two models. (i) H1: the 
entropy for a model trained on the labeled set, and (ii) H2: the conditional 
entropy of for a model trained on the labeled set and an image in the 
unlabeled set 

Labeled 
Dataset

Training Training

Inference Inference
Evaluation  

Dataset
Evaluation  

Dataset

Entropy
calculation

Entropy
calculation

H1 H2 (y=C-1)

Image (x) in 
Unlabeled 

Dataset
 (y=C-1)

EIG (x) = H1 - ∑y p(Y=y) H2(Y=y)

Might not be reliable 



Information Gain Sampling for AL

19

Model

Labeled 
Dataset

Model

● In short, EIG measures difference in the entropy for two models. (i) H1: the 
entropy for a model trained on the labeled set, and (ii) H2: the conditional 
entropy of for a model trained on the labeled set and an image in the 
unlabeled set 

Labeled 
Dataset

Training Training

Inference Inference
Evaluation  

Dataset
Evaluation  

Dataset

Entropy
calculation

Entropy
calculation

H1 H2 (y=C-1)

Image (x) in 
Unlabeled 

Dataset
 (y=C-1)

AEIG (x) = H1 - ∑y p(Y=y) * CF_eval   H2(Y=y)

Adjust according to class-frequency (CF) of evaluation set



Information Gain Sampling for AL

20

● Calculate AEIG for all images in the unlabeled dataset
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● Select top-B images from the unlabeled dataset:
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● Update both the labeled and unlabeled datasets
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● Datasets:

○ Multi-class Diabetic Retinopathy (DR) disease classification
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Experiments and Results
● Datasets:

○ Multi-class Diabetic Retinopathy (DR) disease classification
○ Multi-class skin lesion classification (ISIC)

● Evaluation Metric:
○ ʻmacroʼ Area Under the Receiver Operating Characteristic Curve (ROC AUC) 
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Experiments and Results
● Results
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● why AEIG works better? - DR
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● why AEIG works better? - DR
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● Proposed an information theoretic active learning samples selection approach
● With careful design choices, method can be easily integrated into existing deep 

learning classifiers
● The proposed method achieves 95% of overall performance with only 19% of the 

training data
○ Random: 34%
○ Maximum entropy: 23% 
○ CoreSet: 22%

● The proposed method selects more samples from the least representative 
classes
○ Useful for medical imaging context with high class imbalance
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● Expected Information Gain (EIG)
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● Adjusted Expected Information Gain (AEIG)

   

● The predicted softmax probability (P) of the training model is adjusted with the class frequencies of the 
evaluation set



Medical Image Disease Classification
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● Diabetic Retinopathy disease classification
○ Multi-class classification dataset
○ Classify Colour fundus images into five stages

■ 0 - No DR 
■ 1 - Mild
■ 2 - Moderate
■ 3 - Severe
■ 4 - Proliferative

○ Dataset
■ Kaggle challenge dataset
■ a subset of 8408 retinal fundus images

● randomly divide the whole dataset into 
5000/1000/2408 images for 
training/validation/testing sets
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● ISIC skin lesion classification
○ Multi-class classification dataset
○ Classify dermoscopic images into seven types

○ Dataset
■ ISIC 2018 dataset
■ a subset of 10015 dermoscopic images

● randomly divide the whole dataset into 
6000/1500/2515 images for 
training/validation/testing sets
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● AL framework
○ Total Active Learning runs (J): 6
○ Labeled Set (DL): 600 for ISIC, 500 for DR
○ Unlabeled Set (DU): 5400 for ISIC, 4500 for DR
○ Selected Set (DA): 350 for ISIC, 300 for DR 
○ 5 repetition for both dataset

● Evaluation Metric
○ ʻmacroʼ Area Under the Receiver Operating Characteristic Curve (ROC AUC) 

■ For multi-class DR classification, macro average (unweighted) one-vs-rest (ovr) classifier ROC 
AUC
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● Comparison of EIG, AEIG, and other variants
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● Comparison of EIG, AEIG, and other variants
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● Diabetic Retinopathy disease classification
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● Comparisons Against Active Learning Baselines
○ Insights: why AEIG works better? - ISIC

   



Algorithm
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