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NeuroImaging Modalities
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Thesis Focus
● Human Brain Atlas

The human brain atlas represents a distinct anatomical portrayal of the brain 
depicting finer anatomical details. This atlas provides a standard framework in which 
population based assessment of brain function and anatomy is possible.

Image courtesy: 
http://www.thehumanbrain.info/Coronal section of brain with structure segmentation 
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Brain atlas examples: brain template, structural atlas, functional atlas, 
tractography atlas, probabilistic activity map etc. 

We will focus on the following two: 

1. Population specific brain template
2. Structural atlas

Human brain atlas

MNI 
template

DK atlas



1. Population specific template construction for young Indian population

2. Brain structural segmentation using Deep Learning methods

a. Patch - based approach for whole brain segmentation

b. Fully convolutional approach for sub-cortical segmentation

Thesis Overview
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● The significant difference in the shape and the size of human brains across different 
races pose a great challenge for functional and structural comparison analysis in 
neuroscience research

● Popular MNI152 [3] template is based on MRIs of the caucasian population.
● Recent studies have shown morphological difference between brain MRI of the 

caucasian and the eastern population [4,5,6,7].
● Some recent templates:

○ Chinese56 [4]
○ Chinese2020 [5]
○ Korean78 [6]
○ Korean96 [7]
○ French [8]
○ Colin27 [9]

Need for population specific template



Dataset
● 100 Young Adult, Age: 21 - 30 years (50M/50F)
● 1.5T T1 MRI

○ Voxel size: 1mm x 1mm x 1mm
○ Acquisition matrix: 256 x 256
○ Sagittal slices: 192

● Siemens 
○ MPRAGE
○ TR: 2370 ms
○ TE: 2.9 ms
○ TI: 1000 ms
○ Flip angle: 7°

● GE 
○ BRAVO
○ TR: 10.2 ms
○ TE: 4.2 ms
○ TI: 450 ms
○ Flip angle: 15°

● Phillips 
○ 3D TFE SENSE
○ TR: 8.2 ms
○ TE: 3.8 ms
○ TI: -
○ Flip angle: 7°



Age Distribution



Data Pre-processing

1. AC-PC alignment [10]

2. N4-bias field correction [11]

3. Non Local Mean based denoising [12]

4. Skull - stripping using BET [13]

5. Intensity standardization [14]



Template Construction
● Use of ANTs tool*

● Groupwise Registration Based on "The optimal template effect in 
hippocampus studies of diseased populations." Avants et al. [15]
○ Multiscale Method
○ Symmetric Registration
○ Appearance and Shape guided Registration 

* stnava.github.io/ANTs/

http://stnava.github.io/ANTs/
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Comparison with different template

Comparison of Brain Size and shape of Indian Templates and other templates

AC-PC
(mm)

Length
(mm)

Width
(mm)

Heigth
(mm)

W/L H/L H/W Volume
(dm3)

IBA100 25 160 130 88 0.81 0.55 0.68 1.39

IBA50M 25 162 131 91 0.81 0.56 0.69 1.45

IBA50F 24 157 128 86 0.82 0.55 0.67 1.32

Talairach - 180 146 115 0.81 0.64 0.79 -

MNI152 28 179 142 110 0.79 0.61 0.77 2.06

ICBM452 28 176 144 109 0.81 0.57 0.70 1.56

Chinese56 26 175 145 100 0.83 0.57 0.69 1.89

Chinese2020 26 162 137 94 0.85 0.58 0.69 1.51

Korean96 26 160 136 92 0.85 0.58 0.68 1.63



Need for gender specific template

Comparison of global brain features for Indian young adult subjects in the construction group

AC-PC
(mm)

Length
(mm)

Width
(mm)

Heigth
(mm) W/L H/L H/W Volume

(dm3)

Young 
Adults 25.27 ± 1.29 159.47 ± 7.55 130.63 ± 6.10 88.75 ± 4.35 0.82 ± 0.05 0.56 ± 0.03 0.68 ± 0.04 1.44 ± 0.14

Male 25.57 ± 1.30 162.39 ± 7.73 132.92 ± 6.23 90.29 ± 4.02 0.82 ± 0.05 0.56 ± 0.02 0.68 ± 0.03 1.52 ± 0.13

Female 24.99 ± 1.23 156.67 ± 6.24 128.43 ± 5.12 87.27 ± 4.18 0.82 ± 0.05 0.56 ± 0.03 0.68 ± 0.04 1.36 ± 0.10

p-value 0.017 < 0.001 < 0.001 0.001 0.625 0.421 1.00 < 0.001



Validation of the constructed template

Measurement Original 
brain

Registered to 
MNI152

Registered to 
Chinese2020

Registered to 
IBA100

p-value

P1 P2 P3

AC-PC 25.09 ± 1.39 28.39 ± 1.19 26.52 ± 0.71 25.83 ± 0.93 < 0.0001 * 0.1349 0.2347

Length (L) 160.93 ± 4.99 179.80 ± 1.08 168.17 ± 1.45 161.80 ± 1.26 < 0.0001 * 0.0028 0.4618

Width (W) 129.93 ± 5.43 142.73 ± 1.28 134.90 ± 2.12 129.93 ± 0.88 < 0.0001 * < 0.0001 * 0.8301

Height (H) 88.80 ± 3.41 109.07 ± 1.53 96.77 ± 2.00 89.00 ± 1.73 < 0.0001 * < 0.0001 * 0.8177



Intensity Standardization

● MR image do not have standard intensity range for a particular organ.
● There is inter-scanner, intra-scanner, inter-subject, intra-subject variation in 

intensity profile of MR images

MRI slice

Intensity 
profile

GE Siemens Phillips



Intensity Standardization

Finding the parameters of the standard histogram. For 
illustration, only two input images are shown. For j = 
1; 2, m1j and m2j are the minimum and maximum 
intensities in the image Vj , p1j and p2j are the 
minimum and maximum percentile intensities, μkj is 
one of the landmarks of the histogram, μ’

kj is the 
mapped value of μkj , and μks is the mean of the μ’

kj ; s: 
the actual parameter we are looking for on the standard 
scale. Image Courtesy: [2]

b) c) d)a)

b) Compute intensity histogram of scan.
c) Get the median intensity µ50, p1, and p2 as landmarks. 
d) Linear piece-wise mapping to standard landmarks.



Intensity Standardization

Most Popular approach 

Advantages:
● Based on percentiles of the 

global histogram
● No need for tissue 

segmentation
● Fast

Disadvantage:
● Tissue preservation not 

guaranteed

● Tissue labels required only 
during training 

● IS of a new volume does 
not require tissue labels

● Tissue based percentiles 
derived from nearest 
pre-labelled volume

● Faster than [1]
● Performance is on par with 

[1] and superior to [2]

Recently Proposed approach 

Advantages:
● Based on percentiles of 

tissue level histogram
● Preserves tissue 

information
● Better performance than 

[2]

Disadvantage:
● Needs tissue segmentation
● Slow

Without tissue information [2] Hybrid approach (proposed) With tissue information [1]



Proposed Hybrid Approach

Overview of the proposed hybrid approach for intensity standardization of brain MR images



Evaluation

● 8x3 (=24) T1 weighted volumes from three different scanner manufacturers (GE, Siemens, 
Phillips). 

● Data from scanners GE and Siemens were locally sourced; Phillips scanner data was sourced 
from a public dataset.

Before
IS

After
IS

GE Siemens Phillips



Qualitative Results (PDF)

Inter - 
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Intra - 
scanner

Before 
IS

Before 
IS

After 
IS

After 
IS

GM WM



Quantitative Results
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Need for automatic structural segmentation

● Quantitative analysis of the 
neuroimaging data requires cortical and 
non-cortical structural segmentation.

● Useful for assessment of various 
neurodegenerative disorders, fMRI 
studies, connectivity analysis, etc.

● Manual labelling is unsuitable as it is 
slow and prone to human errors.

T1
MRI

Structure 
Segmentation



Structural segmentation
● Multi-Atlas segmentation: a popular method automatic segmentation 

Image courtesy: 
qure.ai

http://qure.ai


Registration based methods [16]

● Non-rigid registration of training 
atlases to a new volume

● Followed by various fusion 
techniques

● Time consuming (20-25 hours)
● Not ideal for situations where 

segmentation in less time is 
required

Patch based methods [17]

● For a given voxel in a new 
volume, find similar voxels 
from available atlases

● Segment the new volume 
voxel by voxel

● Computational time less than 
the registration based 
approaches, but still 
comparatively higher (2-3 
hours)

Literature survey



Model based methods 
[18][19]

● Learning a mathematical 
model based on training 
atlases

● Segment a new volume 
using the learnt model

● Computationally 
efficient (15-20 minutes)

Machine learning based 
methods [20][21]

● Learn either CNN or RF 
based classifier from 
training dataset

● Segment new volume 
using voxel by voxel

● Computationally efficient 
(5-10 minutes)

Literature survey



Proposed method - patch based approach
● Convolutional neural network based approach for the whole brain segmentation 

(BrainSegNet)

Schematic overview of the proposed CNN Architecture. The number of neurons N is same as the number of manually marked structures in a 
dataset (including background).



Input Patches

Sample input patches. (a) 2.5D representation of the brain MRI volume. For seven different voxels, the Branch 1 
(31x31x3) (b), Branch 2 (93/3 x 93/3 x 3) (c), Branch 3 (21x21x21) (d) and Branch 4 (63/3 x 63/3 x 63/3) (e) 
patches/cubes are also shown. The ordering for (b) and (c) are: coronal (top row), sagittal (middle row) and axial 
(bottom row) slices.



Datasets

 (a) MICCAI-2012 (b) IBSR (c) LONI-LPBA40 (d) Hammers67n20 (e) Hammers83n30

MRI slice

Manual
Segmentation

Automatic
Segmentation

Using 
BrainSegNet



Dataset Various method State-of-the-art BrainSegNet

MICCAI-2012 1 0.711 - 0.764 0.764 0.743

IBSR 2 0.81 - 0.835 0.835 0.844

LONI-LPBA40 3 0.783 - 0.814 0.814 0.824

Hammers67n20 4  0.754 - 0.836 0.836 0.840

Hammers83n30 4  0.752 - 0.801 0.801 0.808

Qualitative Results
● Let A and B denote the binary segmentation labels generated manually 

and computationally, respectively. The DC is defined as:

1. https://masi.vuse.vanderbilt.edu/workshop2012
2. http://www.nitrc.org/projects/ibsr

Performance (Mean DC) comparison of the BrainSegNet with the various methods (MALP based, 
patch based and classification based) for different datasets

3. http://loni.usc.edu/atlases/Atlas_Methods.php?atlas_id=12
4. http://brain-development.org/brain-atlases/

https://masi.vuse.vanderbilt.edu/workshop2012
http://www.nitrc.org/projects/ibsr
http://loni.usc.edu/atlases/Atlas_Methods.php?atlas_id=12
http://brain-development.org/brain-atlases/


Comparison of different variants

Cortical structures Non-cortical structures Overall

CNN1 0.6303±0.023 0.7701±0.024 0.6685±0.021

CNN2a 0.6370±0.011 0.7535±0.024 0.6683±0.010

CNN2b 0.6576±0.011 0.7604±0.028 0.6852±0.012

CNN3 0.6758±0.013 0.7793±0.022 0.7036±0.011

BrainSegNet 0.7204±0.012 0.8053±0.028 0.7432±0.019

mean DC values for different variants of the proposed CNN architecture on MICCAI-2012 dataset.



Sub-cortical segmentation

Image Courtesy: M. Walterfang, et al., “Subcortical volumetric reductions in adult niemann-pick disease type c: a cross-sectional study,” American 
Journal of Neuroradiology, vol. 34, no. 7, pp. 1334–1340, 2013.
 



Inspiration: U-net [22]

CONV (3x3) + 
ReLU + BN
CONV (1x1) + 
ReLU + BN
MAXPOOL

 (2x2)
UPSAMPLE

(2x2)

COPY and 
CONCATE



Proposed: M-net
U-net + 3D-to-2D converter + Skip Connection + Supervision



● Two Datasets:
○ Internet Brain Segmentation Repository (IBSR)
○ MICCAI-2013 SATA Diencephalon Challenge (Mid-brain) - Free 

Competition

● IBSR has 18 volumes, while SATA dataset has 35 training and 12 testing volumes

● Both dataset has total 7 subcortical (left/right) structures marked; namely, 
Amygdala, Caudate, Putamen, Pallidum, Thalamus, Hippocampus and 
Accumbens Area

Datasets



Freesurfer
[18]

FSL
[19] 

RF + 
MRF[20]

FCN + 
MRF[21]

MS-CN+
MRF[22]

U-net +3D-to-2D 
Conv [23]

M-net

Accumbens 0.69 0.73 0.60 0.63 0.69 0.71 0.75

Amygdala 0.69 0.70 0.62 0.64 0.67 0.70 0.73

Pallidum 0.71 0.76 0.62 0.75 0.80 0.80 0.82

Caudate 0.82 0.83 0.78 0.78 0.87 0.85 0.87

Hippocampus 0.77 0.81 0.59 0.71 0.82 0.81 0.82

Putamen 0.81 0.84 0.77 0.83 0.88 0.89 0.90

Thalamus 0.86 0.88 0.80 0.87 0.90 0.88 0.90

Overall 0.76 0.79 0.69 0.75 0.80 0.81 0.83

Evaluation on IBSR

Mean DC comparison on IBSR dataset for 7 sub-cortical structures



Evaluation on SATA

Mean Dice Coefficient
a) Freesurfer      :   0.75761
b) FSL-FIRST    :   0.82437
c) M-net             :   0.85780
d) Atlas-Forest   :   0.82819



MICCAI 2012 Multi-Atlas Labeling Challenge

(1) U-net 2D                            :   0.6624
(2) U-net + 3D-to-2D conv     :   0.6971
(3) M-net                                 :   0.7278
(4) BrainSegNet                      :   0.7430
(5) MAS (state-of-the-art)       :   0.7640

● 15 Training Volumes, 20 Testing Volumes
● Segmentation into 134 structures

○ 98 cortical 
○ 36 non-cortical

Mean Dice Coefficient

M-net: whole brain segmentation
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