

Automatic segmentation algorithms can be useful for faster and reliable tumour

delineation.

- Automatic brain tumor segmentation is a challenging task due to the wide variety of tumor locations, sizes, and shapes
- Various machine learning approaches for automatic tumour segmentation
 - Context-sensitive Random Forrest [1]
 - Multilevel Markov Random Field [2]
 - Multi-scale 3D CNN with Conditional Random Field [3]
 - Boundary Aware Fully Convolutional Neural Network [4]

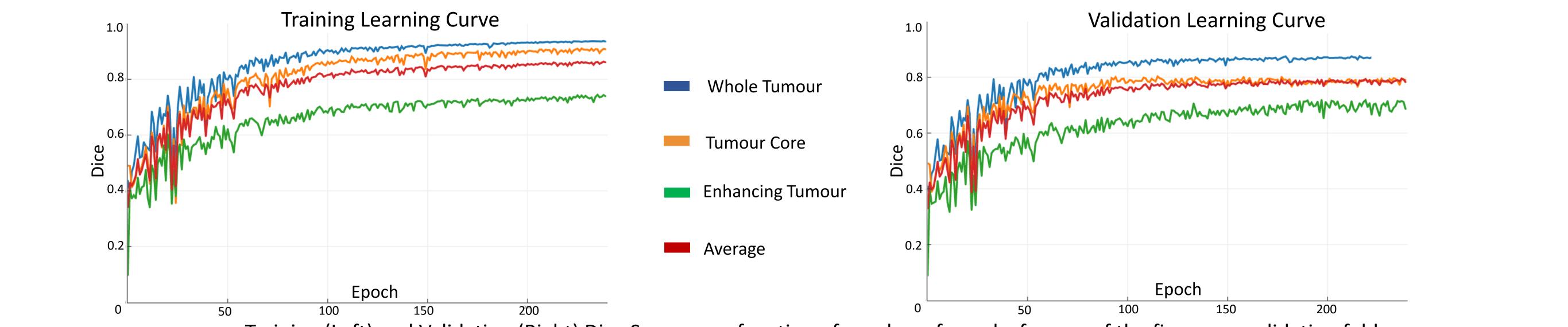
Architecture Details:

- 4 resolution step 3D U-net [5]
- Use of AvgPooling instead of MaxPooling for downsampling.
- Use of Transposed convolution for upsampling.
- Use of Instance-Norm and Dropout after each step
- Categorical Cross-Entropy (CCE) with curriculum class weight as loss function
- Pre-processing: Intensity Standardization using the mean and standard deviation over the masked region of a given MR image

Quantitative Results

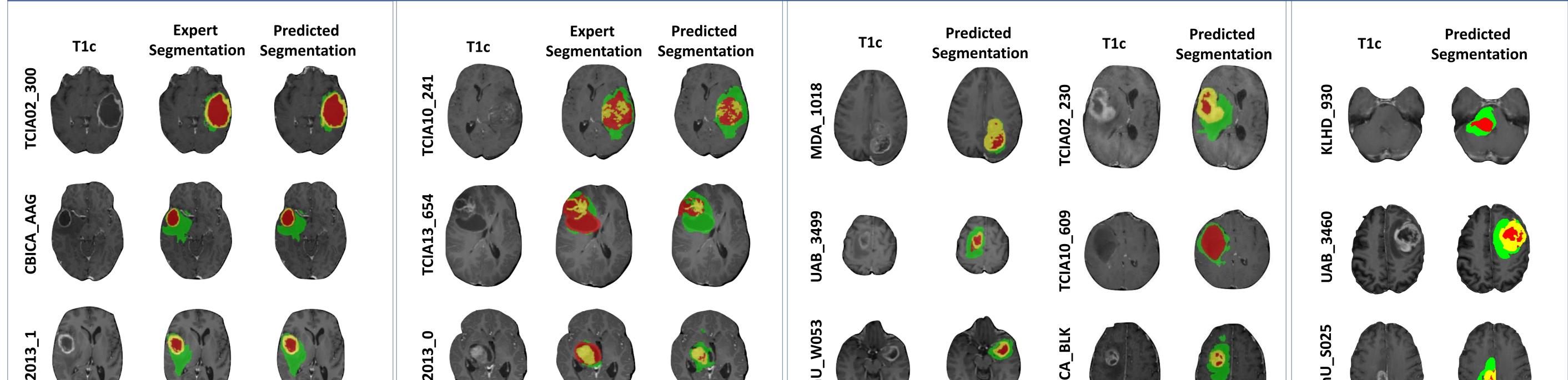
	Dice		S	Sensitivity			Specificity			Hausdorff-95				Dice			Sensitivity			Specificity		Hausdorff-95				
	ET	WT	TC	ET	WT	ΤC	E'	Γ	WT	TC	ET	WT	TC		ET	WT	TC	ET	WT	TC	ET	WT	TC	ET	WT	TC
Mean	0.690	0.888	0.793	0.77	$4\ 0.88$	0.80	2 0.9	$98\ 0$.995 (0.996	7.251	6.600	7.941	Mean	0.788	0.909	0.825	0.824	0.911	0.811	0.998	0.995	0.998	3.520	4.923	8.316
StdDev	0.294	0.094	0.206	0.24	$5\ 0.118$	8 0.21	0 0.0	$04 \ 0$.006 (0.007	13.318	11.215	11.805	StdDev	0.233	0.059	0.179	0.222	0.082	0.212	0.004	0.004	0.002	4.992	8.154	13.521
Median	0.817	0.918	0.876	$\left 0.86 \right $	$1\ 0.913$	0.87	9 0.9	$99\ 0$.996 (0.999	2.237	3.606	4.062	Median	0.869	0.921	0.902	0.893	0.933	0.901	0.999	0.996	0.999	1.732	2.914	3.240
25quantile	0.641	0.878	0.748	8 0.70	9 0.85	0.72	3 0.9	$97\ 0$.994 (0.996	1.414	2.236	2.236	25quantile	0.809	0.894	0.773	0.824	0.880	0.711	0.998	0.994	0.998	1.414	2.000	2.000
75quantile	0.878	0.941	0.926	6 0.93	$5\ 0.958$	8 0.94	2 0.9	$99\ 0$.998 (0.999	5.385	6.557	9.327	75quantile	0.911	0.951	0.945	0.942	0.964	0.958	0.999	0.998	0.999	3.000	4.970	8.658
Challenge N	Aetric	Statis	tics:	5-Fol	d Cros	s-Vali	datio	on o	n Bra	TS 20)18 Tra	ining S	et (Left)	and BraTS 201	8 Vali	datior	n Set (Right)	. Resi	ults ar	e spe	cified	for er	hanci	ing tu	mor (ET

whole tumor (WT 📃 🔳), and tumor core (TC 🔳)



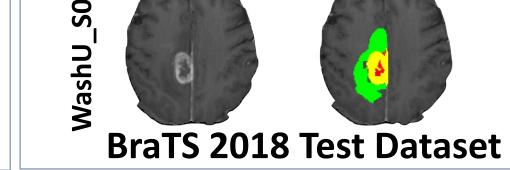
Training (Left) and Validation (Right) Dice Scores as a function of number of epochs for one of the five cross-validation fold.

Qualitative Results



WashU

BraTS 2018 Training Dataset HGG case



Reference:

[1] Zikic et al. "Context-sensitive classication forests for segmentation of brain tumor issues." Proc MICCAI-BraTS (2012): 1-9.

[2] Subbanna et al. "Iterative multilevel MRF leveraging context and voxel information for brain tumour segmentation in MRI." In Proceedings of the IEEE CVPR, pp. 400-405. 2014
[3] Kamnitsas et al. "Ecient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation." Medical image analysis 36 (2017): 61-78.
[4] Shen et al. "Boundary-aware fully convolutional network for brain tumor segmentation." In MICCAI, pp. 433-441. Springer, Cham, 2017.
[5] Cicek et al. "3D U-Net: learning dense volumetric segmentation from sparse annotation." In MICCAI, pp. 424-432. Springer, Cham, 2016.
[6] Menze et al. "The multimodal brain tumor image segmentation benchmark (BRATS)." IEEE TMI 34, no. 10 (2015): 1993.

Acknowledgment: This work was supported by a Canadian Natural Science and Engineering Research Council (NSERC) Collaborative Research and Development Grant (CRDPJ 505357 - 16) and Synaptive Medical. We gratefully acknowledge the support of NVIDIA Corporation for the donation of the Titan X Pascal GPU used for this research.