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Motivation
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Deep learning methods learns a ‘shortcut’
Disease = Medical Devices

Sick patients Healthy patients

Medical 
Device

● Deep learning model optimizes 
for majority population
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Deep learning methods learns a ‘shortcut’
Disease = Medical Devices

● Deep learning model optimizes 
for majority population

● Explainability - Counterfactual 
generation shows when the 
model is ‘right for wrong reasons’

Counterfactual (CF) Explainability: classifier latches onto 
spurious correlations (prevalent in the training dataset for sick 
subjects)



Background
Debiasing and Explainability
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● Debiasing
○ Stochastic Weight Averaging Densely (SWAD) [1] 
○ Sharpness-Aware Minimization (SAM) [2]

● Explainability
○ Grad-CAM [3], LIME [4], SHAP [5], Gifsplanation [6]

○ Counterfactual Explanations[7]

○ Attrinet[8]

● Ours - debias + explain
[1] Cha et al.: Swad: Domain generalization by seeking flat minima..Neurips 2021
[2] Foret et al.:  Sharpness-aware minimization for efficiently improving generalization. arXiv preprint 
arXiv:2010.01412
[3] Selvaraju et al.:  Grad-cam: Visual explanations from deep networks via gradient-based localization. ICCV 2017
[4] Ribeiro et al.: “Why should i trust you?” explaining the predictions of any classifier.  ACM SIGKDD 2016
[5] Lundberg et. al.: A unified approach to interpreting model predictions. Neurips 2017
[6] Cohen et al..: Gifsplanation via latent shift: A simple autoencoder approach to progressive exaggeration on chest 
x-rays. MIDL 2021
[7] Ribeiro et al..: High Fidelity Image Counterfactuals with Probabilistic Causal Models. 
[8] Sun et al..: Inherently Interpretable Multi-Label Classification Using Class-Specific Counterfactuals.. MIDL 2023



Explainability via 
Counterfactual Images

…. Debiasing the results
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Can a model be trained to disregard spurious correlations and identify 
generalizable predictive disease markers?
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Experiments are performed on two 
publicly available datasets:

(i) RSNA Pneumonia Detection 
Challenge

… with synthetic artifacts

(ii) CheXpert

… with real artifacts (medical devices)

Datasets



Methodology
&

Contributions

End-to-end training of a generative 
model to (i) debias and (ii) explain the 
classifier decision.

Evaluation of the counterfactual image 
using a new proposed - Spurious 
Correlation Latching Score (SCLS)
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Cycle-GAN for Counterfactual Image
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Unhealthy sample Healthy sample



Debiasing Classifier - DRO
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Counterfactuals Image Synthesis
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Constraints on Counterfactual images:
1. Identity Preservation
2. Classifier consistency
3. Cycle consistency



Evaluation of the counterfactual images 
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1. Identity Preservation : Structural Similarity Index (SSIM) and Actionability to 
ensure counterfactual images look similar to factual images

1. Counterfactual Prediction Gain (CPG): Ensures the counterfactual images 
belong to the correct target class.

1. Spurious Correlation Latching Score (SCLS): Identifies the presence of 
spurious correlation in the image 

Standard Metrics

New Proposed Metric



Results
We evaluate the performance of

1. Classifier 
2. Counterfactuals

a. Qualitatively
b. Quantitatively 
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Classifier Evaluation
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DRO performs better indicating generalization on the underrepresented classes.



Counterfactual Evaluation [Qualitative]
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Pathology Artifact

•ERM : Significant changes in artifact; DRO: No change in artifact

•ERM : No changes in disease pathology; DRO: Significant changes in disease pathology



Counterfactual Evaluation [Quantitative]
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Dataset 1 Dataset 2

ERM DRO ERM DRO

Actionability 7.68 ± 0.01 7.86 ± 0.01 4.93 ± 0.01 5.68 ± 0.04

SSIM 98.03 ± 0.00 98.44 ± 0.01 98.21 ± 0.01 98.36 ± 0.01

CPG 0.91± 0.04 0.96 ± 0.03 0.88 ± 0.07 0.89 ± 0.04

SCLS 0.80 ± 0.08 0.12 ± 0.07 0.76 ± 0.09 0.22 ± 0.06

Lower SCLS score indicates that DRO based classifier does not latch onto the 
spurious correlation.



Conclusion

● Safe deployment of DL models in 
medical imaging -> Explainability

○ To expose and mitigate spurious 
correlation/ biases

● First integrated end-to-end training 
strategy for generating unbiased 
counterfactual images

○ DRO classifier to enhance generalization
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Thank you!
 amarkr@cim.mcgill.ca


