

Debiasing Counterfactuals In the Presence of Spurious Correlations

Amar Kumar, Nima Fathi, Raghav Mehta, Brennan Nichyporuk, Jean-Pierre R. Falet, Sotirios Tsaftaris, Tal Arbel

Sick particity patients

Deep learning methods learns a 'shortcut' Disease = Medical Devices • Deep learning model optimizes for majority population

Deep learning methods learns a 'shortcut' Disease = Medical Devices

(a) Real (Sick Subject)

(b) CF (Healthy Subject)

Counterfactual (CF) Explainability: classifier latches onto spurious correlations (prevalent in the training dataset for sick subjects)

• Deep learning model optimizes for majority population

-0.5

0.0

(c) Diff. map (Real - CF)

 Explainability - Counterfactual generation shows when the model is 'right for wrong reasons'

Background

Debiasing and Explainability

• Debiasing

- Stochastic Weight Averaging Densely (SWAD) ^[1]
- Sharpness-Aware Minimization (SAM) ^[2]

• Explainability

- Grad-CAM ^[3], LIME ^[4], SHAP ^[5], Gifsplanation ^[6]
- Counterfactual Explanations^[7]
- Attrinet^[8]

• Ours - debias + explain

 Cha et al.: Swad: Domain generalization by seeking flat minima..Neurips 2021
Foret et al.: Sharpness-aware minimization for efficiently improving generalization. arXiv preprint arXiv:2010.01412

[3] Selvaraju et al.: Grad-cam: Visual explanations from deep networks via gradient-based localization. ICCV 2017
[4] Ribeiro et al.: "Why should i trust you?" explaining the predictions of any classifier. ACM SIGKDD 2016

[5] Lundberg et. al.: A unified approach to interpreting model predictions. Neurips 2017[6] Cohen et al..: Gifsplanation via latent shift: A simple autoencoder approach to progressive exaggeration on chest

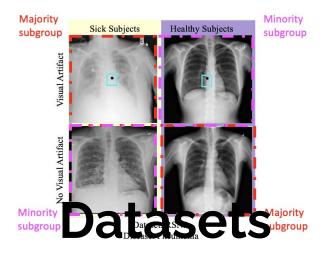
x-rays. MIDL 2021

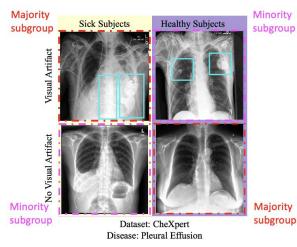
[7] Ribeiro et al..: High Fidelity Image Counterfactuals with Probabilistic Causal Models.

[8] Sun et al..: Inherently Interpretable Multi-Label Classification Using Class-Specific Counterfactuals.. MIDL 20234

Explainability via Counterfactual Images Debiasing the results

Can a model be trained to disregard spurious correlations and identify generalizable predictive disease markers?





Experiments are performed on two publicly available datasets:

(i) RSNA Pneumonia Detection Challenge

... with synthetic artifacts (ii) CheXpert

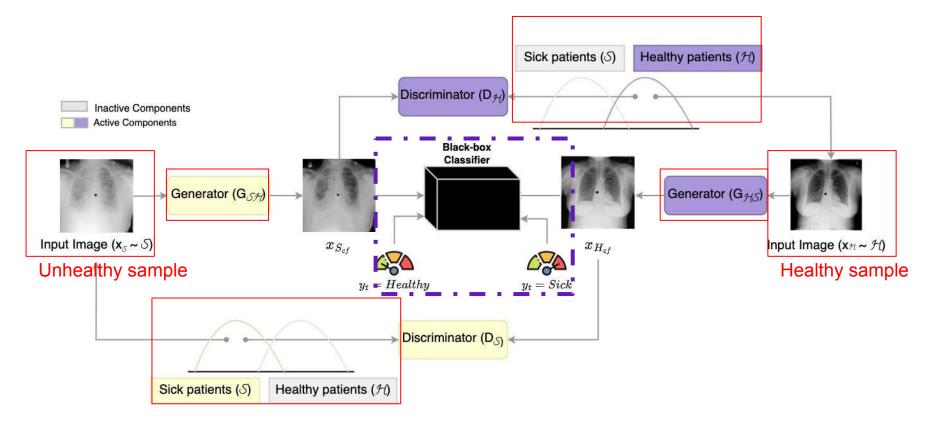
... with real artifacts (medical devices)

Methodology & Contributions

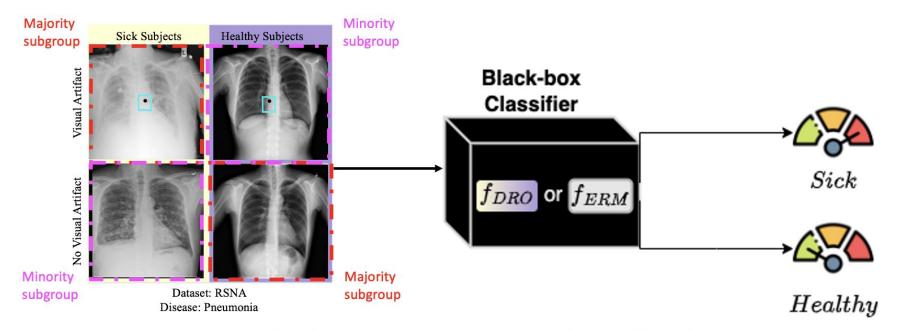
End-to-end training of a generative model to (i) debias and (ii) explain the classifier decision.

Evaluation of the counterfactual image using a new proposed - Spurious Correlation Latching Score (SCLS)

Cycle-GAN for Counterfactual Image

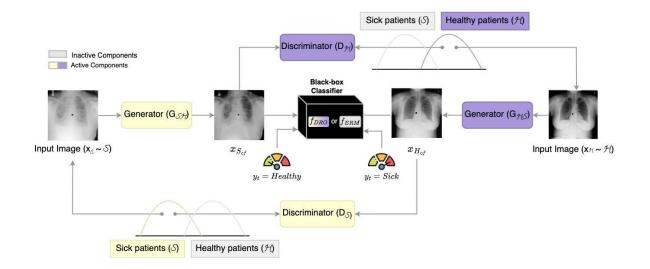


Debiasing Classifier - DRO



ERM: Empirical Risk Minimization; **DRO**: Distributionally Robust Optimization

Counterfactuals Image Synthesis



Constraints on Counterfactual images:

- 1. Identity Preservation
- 2. Classifier consistency
- 3. Cycle consistency

Evaluation of the counterfactual images

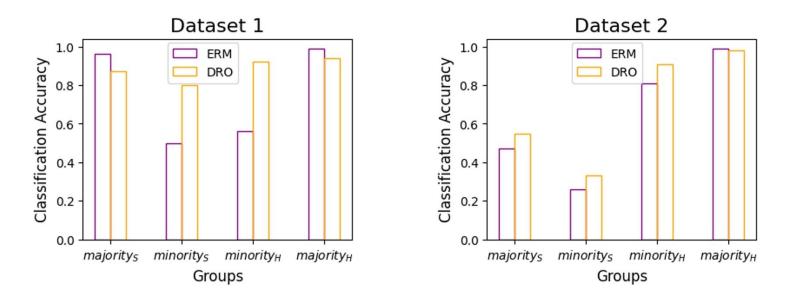
 Identity Preservation : Structural Similarity Index (SSIM) and Actionability to ensure counterfactual images look similar to factual images
Counterfactual Prediction Gain (CPG): Ensures the counterfactual images belong to the correct target class.
Spurious Correlation Latching Score (SCLS): Identifies the presence of spurious correlation in the image

Results

We evaluate the performance of

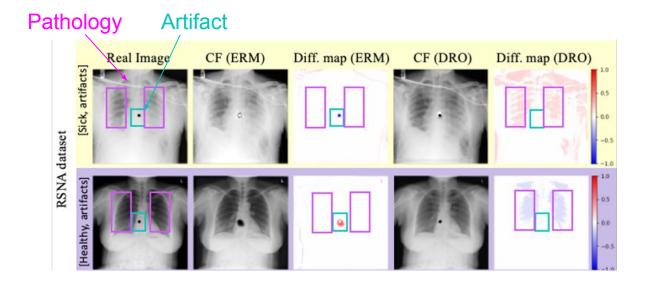
- 1. Classifier
- 2. Counterfactuals
 - a. Qualitatively
 - b. Quantitatively

Classifier Evaluation



DRO performs better indicating generalization on the underrepresented classes.

Counterfactual Evaluation [Qualitative]



•ERM : Significant changes in artifact; DRO: No change in artifact

•ERM : No changes in disease pathology; DRO: Significant changes in disease pathology

Counterfactual Evaluation [Quantitative]

	Dataset 1		Dataset 2	
	ERM	DRO	ERM	DRO
Actionability	7.68 ± 0.01	7.86 ± 0.01	4.93 ± 0.01	5.68 ± 0.04
SSIM †	98.03 ± 0.00	98.44 ± 0.01	98.21 ± 0.01	98.36 ± 0.01
CPG †	0.91± 0.04	0.96 ± 0.03	0.88 ± 0.07	0.89 ± 0.04
SCLS ↓	0.80 ± 0.08	0.12 ± 0.07	0.76 ± 0.09	0.22 ± 0.06

Lower SCLS score indicates that DRO based classifier <u>does not</u> latch onto the spurious correlation.

Conclusion

- Safe deployment of DL models in medical imaging -> Explainability
 - To expose and mitigate spurious correlation/ biases

- First integrated end-to-end training strategy for generating unbiased counterfactual images
 - DRO classifier to enhance generalization

Alliance de recherche numérique du Canada

Thank you!

amarkr@cim.mcgill.ca

