

A Hybrid Approach to Tissue-based Intensity Standardization of Brain MRI images

Raghav Mehta, Jayanthi Sivaswamy

Center for Visual Information Technology International Institute of Information Technology, Hyderbad, India

1. Introduction

- Segmentation and registration of MRI are critical to diagnosis of various neuro disorders.
- These tasks depend on intensity value of MRI, which varies across scanners, protocol, etc.
- A preprocessing step is required to address this variation.
 - This process is known as Intensity Standardization (IS).
- IS techniques are generally based on landmarks on histograms.

Intensity Standardization

5. Dataset and Preprocessing

- 8x3 (=24) T1 weighted volumes from different scanner manufacturers. • Data from scanners G and S were locally sourced; data from scanner P is from a public dataset.
- Denoising and Intensity Inhomogeneity correction (N3) was performed for all volumes.

Scanner	TE (ms)	TR (ms)	TI (ms)	FA (°)	
G	4.2	10.2	450	15	
S	2.9	2370	1000	7	
Р	4.6	9.83	NA	8	

• Tissue segmentation generated using FAST tool of FSL toolbox

6. Quantitative Analysis

Without Tissue Information [2]	Proposed method	With Tissue Information [1]
Most Popular approach <u>Advantages:</u> Based on percentiles of the <i>global</i> <i>histogram</i> No need for tissue segmentation Fast <u>Disadvantage:</u> Tissue preservation not guaranteed	 Tissue labels required only for training phase IS of a new volume does not require tissue labels Tissue based percentiles derived from <i>nearest</i> pre-labelled volume Faster than [1] Performance is on par with [1] and superior to [2] 	 Recently proposed approach <u>Advantages :</u> Based on percentiles of <i>tissue leve</i> <i>histogram</i> Preserves tissue information Better performance than [2] <u>Disadvantages:</u> Need for tissue segmentation Slow

where, **s** = standard scale

 $\mathbf{k} = \mathbf{n} \text{ or } \mathbf{g}$

- The proposed method was validated using Jeffrey Divergence (JD) and statistics on Normalised Mean Intensity (NMI) values of whole dataset, with leave-one-out (LOO) approach
- Low JD is desirable
- $I_n^{j}(k)$ is the nth volume (after masking with M_n^{j}) from the kth scanner

• n = 1, ..., 8; j = k = 1, 2, 3,

Brain

MRI

volume

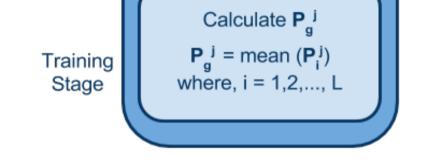
of volume using T_v

get <u>continuous</u> **T**

 $JD_{intra}(k,j) = \frac{1}{mn} \sum_{n} \sum_{m} JD(I_n^j(k), I_m^j(k))$ $m \neq n, \forall n, m \in k$

$$JD_{inter}(k_a, k_b, j) = \frac{1}{mn} \sum_{n} \sum_{m} JD(I_n^j(k_a), I_m^j(k_b))$$
$$\forall n \in k_a, \forall m \in k_b$$

		Intra	a-scanne	r JD	Inter-scanner JD		NMI statistics			
		(in x 10 ⁻²)						(across all volumes)		
		G	S	Р	G vs S	G vs P	S vs P	σ _{NMI}	μ _{NMI}	% CV
CSF	Before IS	7.99	6.06	2.04	1.25	0.28	1.10	0.0240	0.1444	16.621
	[2]	3.87	2.74	0.97	0.08	0.03	0.05	0.0127	0.2228	5.7001
	ours	3.53	2.40	0.87	0.04	0.03	0.04	0.0055	0.2506	2.1942
	[1]	3.50	2.35	0.84	0.03	0.02	0.03	0.0049	0.2412	2.0315
GM	Before IS	16.32	9.28	3.34	1.38	0.48	1.23	0.0305	0.2676	11.399



Identify L-NN volumes using minimum KL divergence criteria

Brain MRI

volume

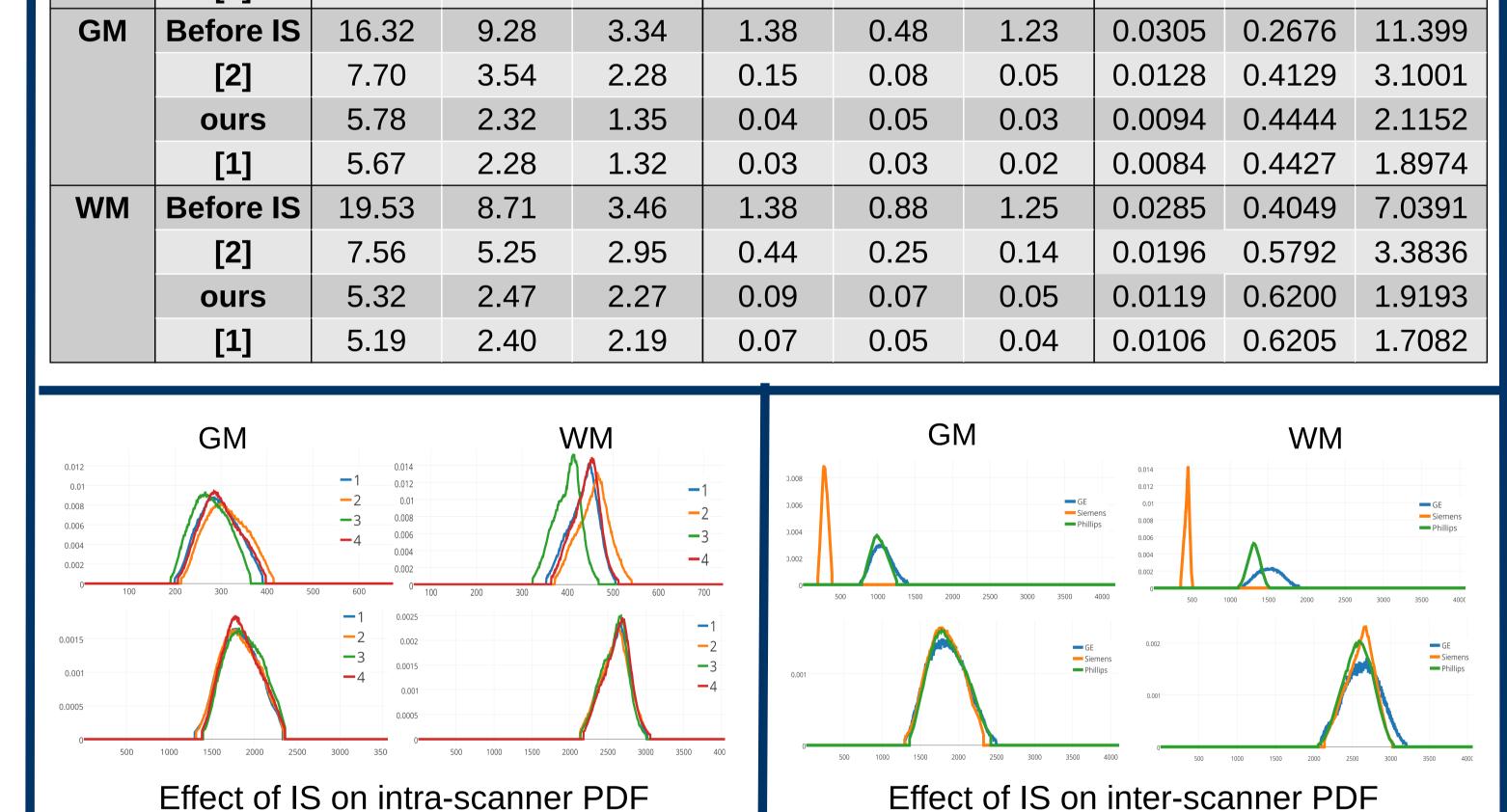
3. Training Stage

Data: A set of MRI $V = \{I_n\}$ with tissue masks $\{M_n^J\}$; n = 1,..,N and j = GM, WM and CSF; percentile P_s^J of standard scale **Processing steps**:

- 1) Calculate grey level histograms and corresponding percentiles for each tissue type P_n^J
- 2) Determine Transformation T_n^J , for every tissue type, by matching percentile landmarks P_n^J to P_s^J
- 3) Derive continuous mapping T_n for entire volume via spline-fitting through T_n^J

4.. Testing Stage

Given a non-standardized MRI volume I_q , IS involves the following:

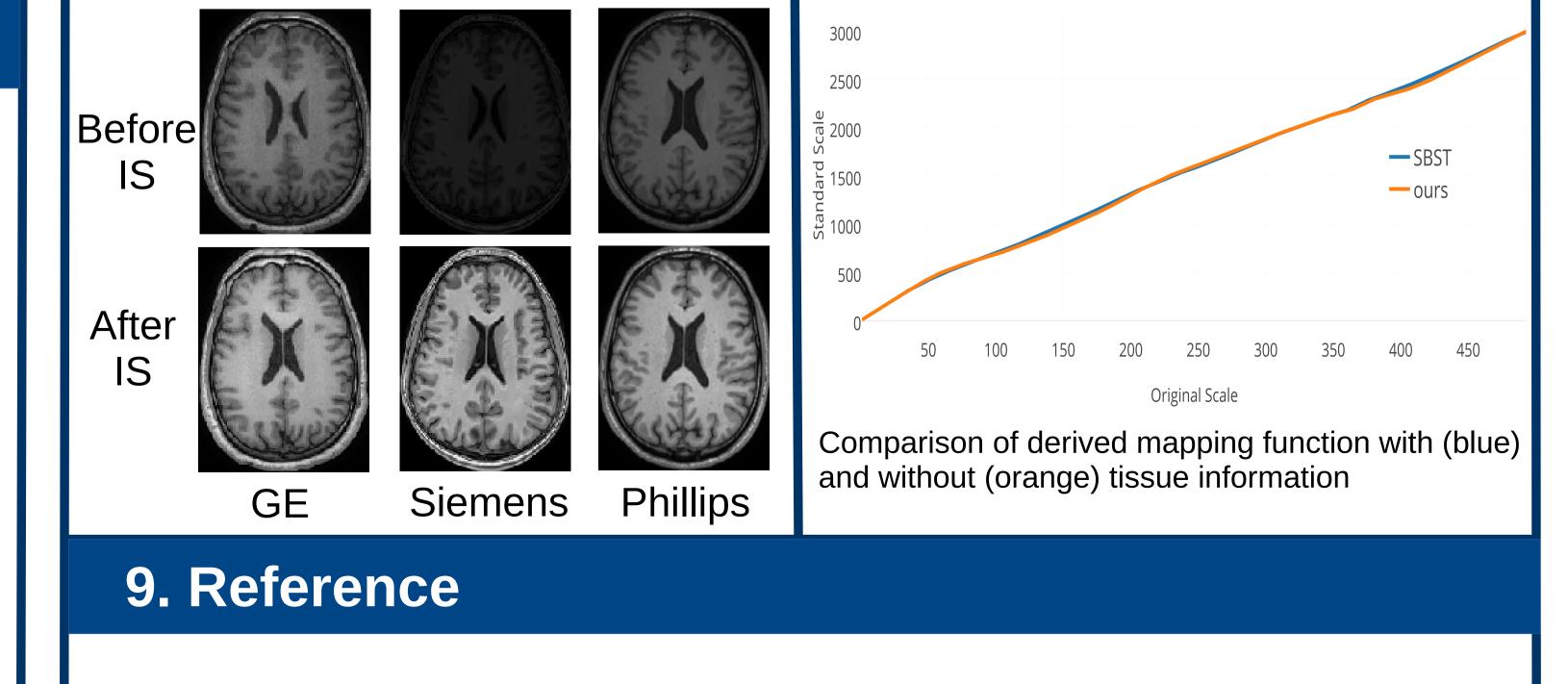


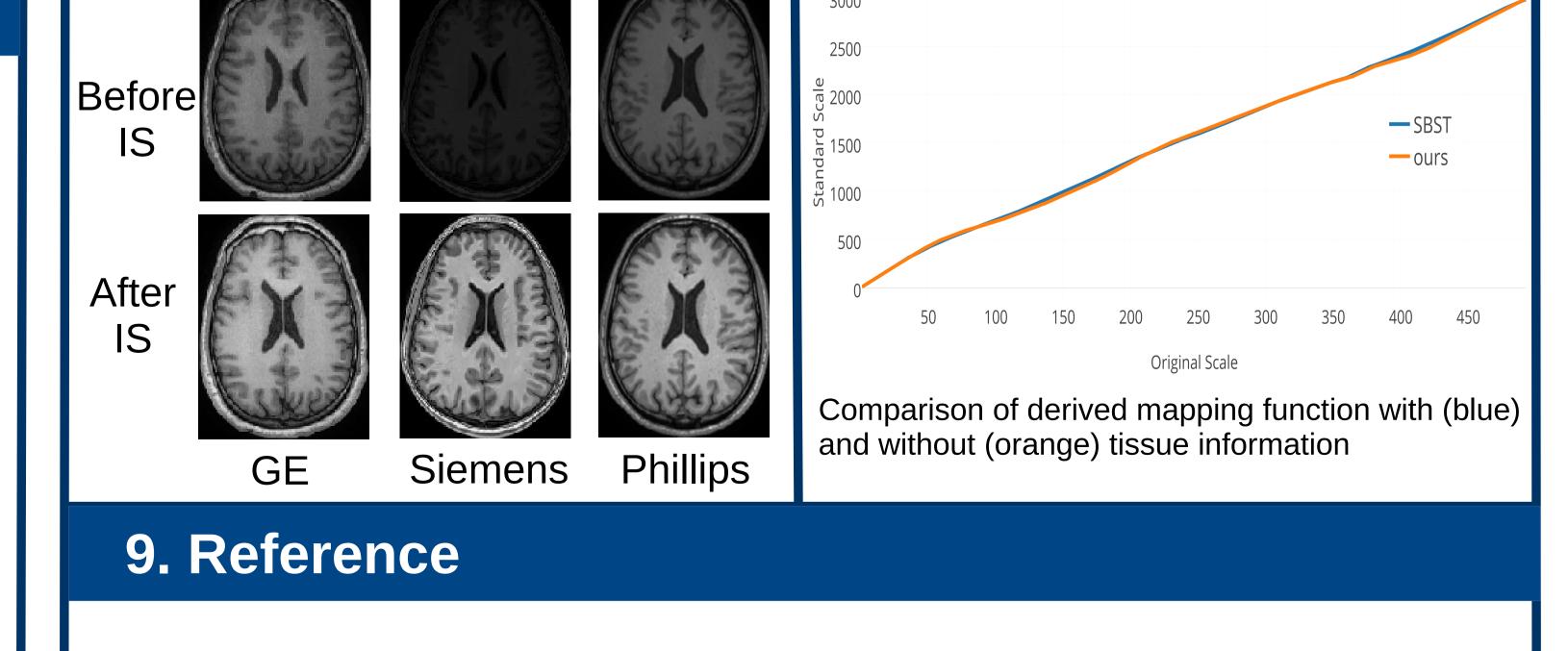
Effect of IS on intra-scanner PDF Top (bottom) rows: before (after) IS

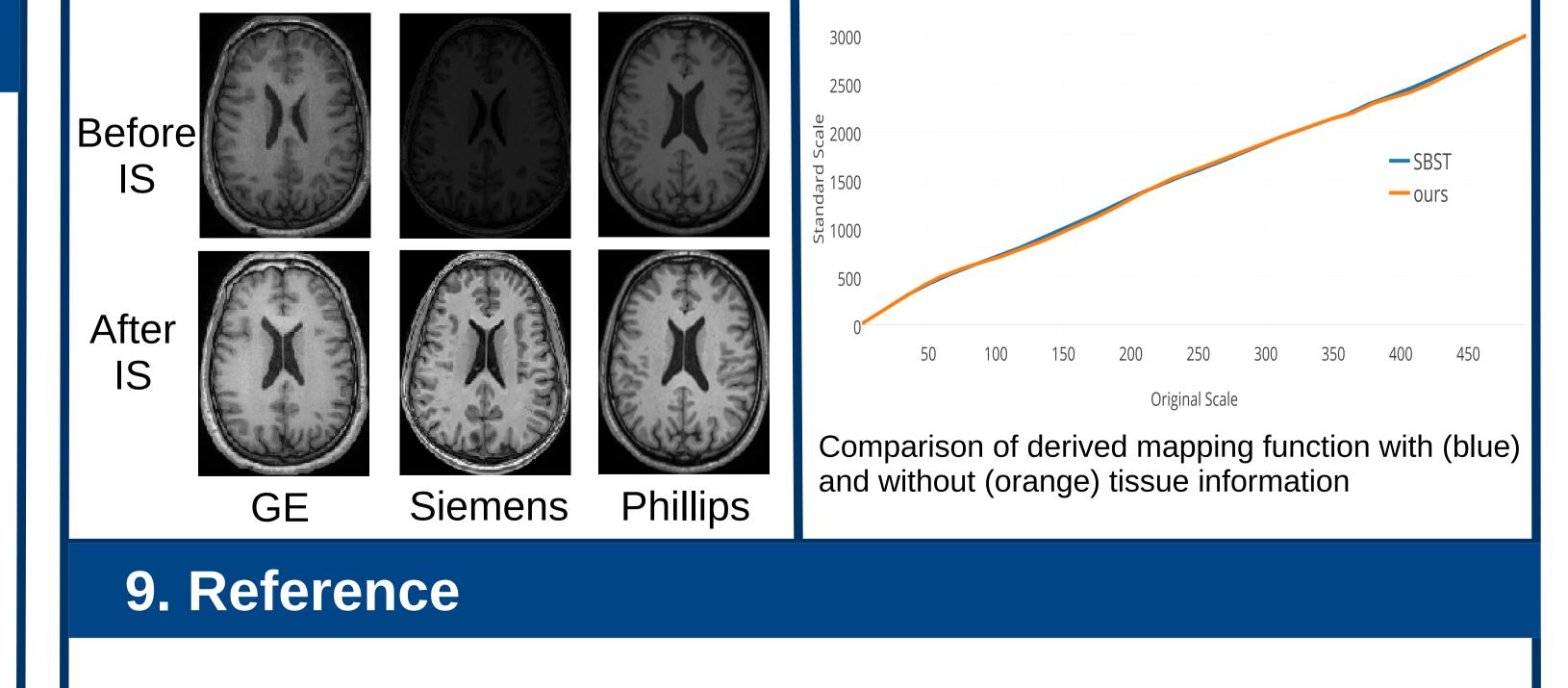
7. Qualitative Analysis

8. Mapping Function Comparision

Top (bottom) rows: before (after) IS







1) Remap the intensity range of volumes $I_n \in V$ to that of I_q 2) Compute KL divergence (KLD) between I_q and V 3) Find L nearest volumes by thresholding the KLD 4) Compute P_q^{J} from landmarks of L training images

 $P_{g}^{j} = \sum_{i=1}^{L} W_{i} P_{i}^{j}, \quad \forall j$ $W_{i} = \frac{W_{i}}{\sum_{i=1}^{L} W_{i}}, \quad w_{i} = \frac{1}{KLD(i)}, \quad \forall i$ $KLD(n) = KLD(h_n, h_g) = \sum_i h_n(i) \log\left(\frac{h_n(i)}{h_x(i)}\right)$ $h_x = Hist(I_x)$

5) Match P_q^{j} to standard scale P_s^{j} to get derive T_q^{j}

6) Interpolate to get continuous mapping T_q

1) De Nunzio et al. "Robust Intensity Standardization in Brain Magnetic Resonance Images." Journal of digital imaging 28.6 (2015): 727-737

2) Nyúl et al. "New variants of a method of MRI scale standardization.", IEEE Transactions on Medical Imaging (TMI) 19.2 (2000): 143-150.

