
Raghav Mehta, Tal Arbel

Centre for Intelligent Machines
McGill University

RS-Net: Regression-Segmentation 3D CNN 
for Synthesis of Full Resolution Missing 
Brain MRI in the Presence of Tumours

SASHIMI MICCAI 2018



Motivation
• Availability of different modalities of MRI assists in better analysis of disease

 Improved segmentation of pathology [1]

• In real clinical practice, not all modalities are always available due to various reasons

 Cost and time constraints

 Image corruption due to noise, patient movement

 Inappropriate acquisition parameters

• Synthesized missing modality can be used by clinicians for better diagnosis 

• This can also assist in improving automatic pathology segmentation [3]

[1] Havaei et al., MICCAI 2016
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Motivation
• Availability of different modalities of MRI assists in better analysis of disease

 Improved segmentation of pathology [1]

• In real clinical practice, not all modalities are always available due to various reasons

 Cost and time constraints

 Image corruption due to noise, patient movement

 Inappropriate acquisition parameters

• Synthesized missing modality can be used by clinicians for better diagnosis 

• This can also assist in improving automatic pathology segmentation [2]

[1] Havaei et al., MICCAI 2016

[2] Tulder et al., MICCAI 2015 1
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Related Work (Modality Synthesis)

[3] Ye et al., MICCAI 2013

[4] Jog et al., MIA 2016

[5] Roy et al., TMI 2013

[6] Van Nguyen et al., MICCAI 2015

[7] Chartsias et al., TMI 2017

[8] Wolterink et al., SASHIMI MICCAI 2017

Dataset Synthesis Type Evaluation Metrics

Modality Propagation [3] Diseased / Pathology Uni-modal Correlation Co-

efficient (CC)

REPLICA [4] Healthy / Pathology Uni-modal / Multi-

modal

PSNR, SSIM, UQI 

MIMECS [5] Healthy / Pathology Uni-modal / Multi-

modal

Tissue Segmentation / 

Visual Comparison

LSDN [6] Healthy Uni-modal PSNR

2D-CNN [7] Pathology Uni-modal / Multi-

modal

MSE, PSNR, SSIM

2D-GAN [8] Pathology Uni-modal MAE, PSNR
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• Method specifically designed for synthesizing MR sequence with pathology

• Multimodal synthesis of missing MR sequence

• Synthesis quantification using on MC-dropout based uncertainty estimation

• Experiments on publicly available large-scale brain tumour dataset

• Evaluation based on downstream segmentation task

In this Paper…

3

T1 T2 FLAIRT1c



• Method specifically designed for synthesizing MR sequence with pathology

• Multimodal synthesis of missing MR sequence

• Synthesis quantification using on MC-dropout based uncertainty estimation

• Experiments on publicly available large-scale brain tumour dataset

• Evaluation based on downstream segmentation task

In this Paper…

3

T1 T2 FLAIRT1c



• Method specifically designed for synthesizing MR sequence with pathology

• Multimodal synthesis of missing MR sequence

• Synthesis quantification using on MC-dropout [9] based uncertainty estimation

• Experiments on publicly available large-scale brain tumour dataset

• Evaluation based on downstream segmentation task

In this Paper…

3
[9] Gal and Ghahramani, ICLR 2016

T1 T2 FLAIRT1c



• Method specifically designed for synthesizing MR sequence with pathology

• Multimodal synthesis of missing MR sequence

• Synthesis quantification using on MC-dropout [9] based uncertainty estimation

• Experiments on publicly available large-scale brain tumour dataset (BraTS 2017)

• Evaluation based on downstream segmentation task

In this Paper…

3
[9] Gal and Ghahramani, ICLR 2016

T1 T2 FLAIRT1c



• Method specifically designed for synthesizing MR sequence with pathology

• Multimodal synthesis of missing MR sequence

• Synthesis quantification using on MC-dropout [9] based uncertainty estimation

• Experiments on publicly available large-scale brain tumour dataset (BraTS 2017)

• Evaluation based on downstream segmentation task

In this Paper…

3
[9] Gal and Ghahramani, ICLR 2016

T1 T2 FLAIRT1c



Proposed Method (RS-Net)

[10] Cicek et al., MICCAI 2016

[11] Ulyanov et al., arXiv:1607.08022.

4



Loss Function
• Weighted combination of Mean Squared Error (MSE), for synthesis, and 

Categorical Cross Entropy (CCE), for segmentation.

𝐿𝑖 = 𝜆1(𝑤𝑛
𝑖 ∗ 𝑀𝑆𝐸)𝑖 + 𝜆2(𝑤𝑛

𝑖 ∗ 𝐶𝐶𝐸)𝑖
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Loss Function
• Weighted combination of Mean Squared Error (MSE), for synthesis, and 

Categorical Cross Entropy (CCE), for segmentation.

𝐿𝑖 = 𝜆1(𝑤𝑛
𝑖 ∗ 𝑀𝑆𝐸)𝑖 + 𝜆2(𝑤𝑛

𝑖 ∗ 𝐶𝐶𝐸)𝑖

• Weights for each samples according to its true label.
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Which is real and which is 
synthesized?

T2
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3D visualization

T1c
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Synthesis Uncertainty

RS-Net
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Synthesis Uncertainty

Mean synthesis

Uncertainty (std)

RS-Net
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Experiments on BraTS 2017 dataset
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Dataset and Pre-processing
• 2017 Brain Tumour Segmentation (BraTS) [12] challenge dataset

 4 modalities (T1, T2, FLAIR, T1c)

 Resolution: 1x1x1 mm3  

 Dimensions: 184 x 200 x 152

 Manual marking for 3 types of tumour (edema, necrotic core, and enhancing core)

• Pre-processing

 Skull stripping

 Co-registration

 Intensity Normalization (mean subtraction, divide by standard deviation, re-mapping 
to 0-1)

[12] Menze et al., TMI 2015
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Dataset and Pre-processing
• 2017 Brain Tumour Segmentation (BraTS) [12] challenge dataset

 4 modalities (T1, T2, FLAIR, T1c)

 Resolution: 1x1x1 mm3  

 Dimensions: 184 x 200 x 152

 Manual marking for 3 types of tumour (edema, necrotic core, and enhancing core)

• Pre-processing

 Skull stripping

 Co-registration

 Intensity Normalization (mean subtraction, divide by standard deviation, re-mapping 
to 0-1)

• BraTS 2017 Training data (285 patients) for training (228) and validation (57)

• BraTS 2017 Validation data (46 patients) for testing 

[12] Menze et al., TMI 2015
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Real

Synthesis

T1 T2 T1c FLAIR

Uncertainty
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Quantitative Evaluation
• Standard Evaluation metrics [4,6,7,8]

 Peak Signal to Noise Ration (PSNR)

 Mean Squared Error (MSE)

 Structure Similarity Index (SSIM)
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Quantitative Evaluation
• Standard Evaluation metrics [4,6,7,8]

 Peak Signal to Noise Ration (PSNR)

 Mean Squared Error (MSE)

 Structure Similarity Index (SSIM)

• Global metrics, Useful for quantitative evaluation of the whole MRI

• Here, interested in evaluating synthesis performance in the area of tumour

• Tumour Segmentation (whole, core, and enhancing) evaluation

 Dice Coefficient 

 𝐷𝐼𝐶𝐸 𝐴, 𝐵 =
2 | 𝐴 ∩ 𝐵 |

| 𝐴 ∪ 𝐵 |
* 100
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Segmentation Network (S-Net)

[10] Cicek et al., MICCAI 2016

[11] Ulyanov et al., arXiv:1607.08022.
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Replacing real with synthetic MRI 
Volumes

DE: Dice Enhance

DT: Dice Tumour

DC: Dice Core

Real MRI

Synthesised MRI (RS-Net)
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Regression-only Network (R-Net)

R-Net
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Comparison of RS-Net and R-Net
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Comparison of RS-Net against other 
methods
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Comparison of RS-Net against other 
methods
• Comparison against following state-of-the-art methods:

 2D Convolutional Neural Network (2D CNN) [7] 

 Regression Ensembles with Patch Learning for Image Contrast Agreement (REPLICA) [4] 

 Patch-based Location Sensitive Deep Network (LSDN) [6]

[4] Jog et al., MIA 2016

[6] Van Nguyen et al., MICCAI 2015

[7] Chartsias et al., TMI 2017
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Comparison of RS-Net against other 
methods
• Comparison against following state-of-the-art methods:

 2D Convolutional Neural Network (2D CNN) [7] 

 Regression Ensembles with Patch Learning for Image Contrast Agreement (REPLICA) [4] 

 Patch-based Location Sensitive Deep Network (LSDN) [6]

[4] Jog et al., MIA 2016

[6] Van Nguyen et al., MICCAI 2015

[7] Chartsias et al., TMI 2017

• Two Experiments:

 T1 -to- T2 synthesis

 T1 -to- FLAIR synthesis
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Dataset and Pre-processing
• 2015 Brain Tumour Segmentation (BraTS) [12] challenge dataset

 4 modalities (T1, T2, FLAIR, T1c)

 Resolution: 1x1x1 mm3  

 Dimensions: 240 x 240 x 155

 Manual marking for 3 types of tumour (edema, necrotic core, and enhancing core)

• Pre-processing

 Skull stripping

 Co-registration

 Intensity Normalization (Divide by mean)

[12] Menze et al., TMI 2015
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Dataset and Pre-processing
• 2015 Brain Tumour Segmentation (BraTS) [12] challenge dataset

 4 modalities (T1, T2, FLAIR, T1c)

 Resolution: 1x1x1 mm3  

 Dimensions: 240 x 240 x 155

 Manual marking for 3 types of tumour (edema, necrotic core, and enhancing core)

• Pre-processing

 Skull stripping

 Co-registration

 Intensity Normalization (Divide by mean)

• BraTS 2015 Training Low-Grade Glioma cases (54 patients)

• 5 fold cross validation with 42, 6, and 6 cases respectively for training, validation, and 
testing.

[12] Menze et al., TMI 2015
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Evaluation Metrics
• Structure Similarity Index (SSIM)

• Peak Signal -to- Noise Ratio (PSNR) 

SSIM =
(2𝜇𝑥𝜇𝑥′+𝑐1)(2𝜎𝑥𝑥′+𝑐2)

(𝜇𝑥
2+𝜇

𝑥′
2 +𝑐1)(𝜎𝑥

2+𝜎
𝑥′
2 +𝑐2)

PSNR = 𝑙𝑜𝑔10(
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
)
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T1 -to- T2 synthesis

Input T1 MRI Real T2 MRISynthesised T2 MRI

RS-Net

[5] Jog et al., MIA 2015

[7] Van Nguyen et al., MICCAI 2015

[8] Chartsias et al., TMI 2017

[5] [7] [8]
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T1 -to- T2 synthesis

Input T1 MRI Real T2 MRISynthesised T2 MRI

RS-Net

[4] Jog et al., MIA 2015

[6] Van Nguyen et al., MICCAI 2015

[7] Chartsias et al., TMI 2017

[4] [6] [7]

SSIM
PSNR
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T1 -to- FLAIR synthesis

Input T1 MRI Real FLAIR MRISynthesised FLAIR MRI

RS-Net

[5] [7] [8]

[5] Jog et al., MIA 2015

[7] Van Nguyen et al., MICCAI 2015
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T1 -to- FLAIR synthesis

Input T1 MRI Real FLAIR MRISynthesised FLAIR MRI

RS-Net

[4] [6] [7]

[4] Jog et al., MIA 2015

[6] Van Nguyen et al., MICCAI 2015

[7] Chartsias et al., TMI 2017

SSIM
PSNR
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Conclusion
• Proposed a 3D CNN for the combined task of Synthesis and Segmentation

 High quality synthesis even for tumour regions

• Uncertainty Measurement in synthesis using MC dropout

 Can be communicated to clinicians

• Quantitative evaluation with downstream task of tumour segmentation

 Real MRI can be replaced with Synthesised MRI with minimum degradation in 
tumour segmentation accuracy

 Combined Synthesis-Segmentation improves quality over only Synthesis, especially 
for FLAIR, T1c

• T1c synthesis is still an open and challenging task 

23



T2

Questions?

Real Synthesized



T1

3D visualization

Real Synthesized



3D visualization

T1c
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3D visualization

FLAIR
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Performance of Segmentation part of 
RS-Net
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Performance of Segmentation part of 
RS-Net

DE: Dice Enhance

DT: Dice Tumour

DC: Dice Core

Real MRI

Synthesised MRI (RS-Net)

Segmentation output of RS-Net without MR volume
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