RS-Net: Regression-Segmentation 3D CNN for Synthesis of Full Resolution Missing Brain MRI in the Presence of Tumours

Raghav Mehta, Tal Arbel

Centre for Intelligent Machines McGill University

SASHIMI MICCAI 2018

Motivation

- Availability of different modalities of MRI assists in better analysis of disease
 - Improved segmentation of pathology [1]

Motivation

- Availability of different modalities of MRI assists in better analysis of disease
 - Improved segmentation of pathology [1]
- In real clinical practice, not all modalities are always available due to various reasons
 - Cost and time constraints
 - Image corruption due to noise, patient movement
 - Inappropriate acquisition parameters

Motivation

- Availability of different modalities of MRI assists in better analysis of disease
 - Improved segmentation of pathology [1]
- In real clinical practice, not all modalities are always available due to various reasons
 - Cost and time constraints
 - Image corruption due to noise, patient movement
 - Inappropriate acquisition parameters
- Synthesized missing modality can be used by clinicians for better diagnosis
- This can also assist in improving automatic pathology segmentation [2]

Havaei et al., MICCAI 2016
 Tulder et al., MICCAI 2015

Related Work (Modality Synthesis)

	Dataset	Synthesis Type	Evaluation Metrics
Modality Propagation [3]	Diseased / Pathology	Uni-modal	Correlation Co- efficient (CC)
REPLICA [4]	Healthy / Pathology	Uni-modal / Multi- modal	PSNR, SSIM, UQI
MIMECS [5]	Healthy / Pathology	Uni-modal / Multi- modal	Tissue Segmentation / Visual Comparison
LSDN [6]	Healthy	Uni-modal	PSNR
2D-CNN [7]	Pathology	Uni-modal / Multi- modal	MSE, PSNR, SSIM
2D-GAN [8]	Pathology	Uni-modal	MAE, PSNR

[3] Ye et al., MICCAI 2013
[4] Jog et al., MIA 2016
[5] Roy et al., TMI 2013

[6] Van Nguyen et al., MICCAI 2015[7] Chartsias et al., TMI 2017[8] Wolterink et al., SASHIMI MICCAI 2017

• Method specifically designed for synthesizing MR sequence with pathology

- Method specifically designed for synthesizing MR sequence with pathology
- Multimodal synthesis of missing MR sequence

- Method specifically designed for synthesizing MR sequence with pathology
- Multimodal synthesis of missing MR sequence
- Synthesis quantification using on MC-dropout [9] based uncertainty estimation

- Method specifically designed for synthesizing MR sequence with pathology
- Multimodal synthesis of missing MR sequence
- Synthesis quantification using on MC-dropout [9] based uncertainty estimation
- Experiments on publicly available large-scale brain tumour dataset (BraTS 2017)

- Method specifically designed for synthesizing MR sequence with pathology
- Multimodal synthesis of missing MR sequence
- Synthesis quantification using on MC-dropout [9] based uncertainty estimation
- Experiments on publicly available large-scale brain tumour dataset (BraTS 2017)
- Evaluation based on downstream segmentation task

Proposed Method (RS-Net)

Loss Function

• Weighted combination of Mean Squared Error (MSE), for synthesis, and Categorical Cross Entropy (CCE), for segmentation.

 $L^{i} = \lambda_{1}(w_{n}^{i} * MSE)^{i} + \lambda_{2}(w_{n}^{i} * CCE)^{i}$

Loss Function

• Weighted combination of Mean Squared Error (MSE), for synthesis, and Categorical Cross Entropy (CCE), for segmentation.

$$L^{i} = \lambda_{1}(w_{n}^{i} * MSE)^{i} + \lambda_{2}(w_{n}^{i} * CCE)^{i}$$

• Weights for each samples according to its true label.

Which is real and which is synthesized?

T2

Which is real and which is synthesized?

Real

۰

Synthesized

T2

3D visualization

Synthesized

RS-Net

RS-Net

RS-Net

RS-Net

RS-Net

Experiments on BraTS 2017 dataset

Dataset and Pre-processing

- 2017 Brain Tumour Segmentation (BraTS) [12] challenge dataset
 - 4 modalities (T1, T2, FLAIR, T1c)
 - Resolution: 1x1x1 mm³
 - Dimensions: 184 x 200 x 152
 - Manual marking for 3 types of tumour (edema, necrotic core, and enhancing core)
- Pre-processing
 - Skull stripping
 - Co-registration
 - Intensity Normalization (mean subtraction, divide by standard deviation, re-mapping to 0-1)

Dataset and Pre-processing

- 2017 Brain Tumour Segmentation (BraTS) [12] challenge dataset
 - 4 modalities (T1, T2, FLAIR, T1c)
 - Resolution: 1x1x1 mm³
 - Dimensions: 184 x 200 x 152
 - Manual marking for 3 types of tumour (edema, necrotic core, and enhancing core)
- Pre-processing
 - Skull stripping
 - Co-registration
 - Intensity Normalization (mean subtraction, divide by standard deviation, re-mapping to 0-1)
- BraTS 2017 Training data (285 patients) for training (228) and validation (57)

Dataset and Pre-processing

- 2017 Brain Tumour Segmentation (BraTS) [12] challenge dataset
 - 4 modalities (T1, T2, FLAIR, T1c)
 - Resolution: 1x1x1 mm³
 - Dimensions: 184 x 200 x 152
 - Manual marking for 3 types of tumour (edema, necrotic core, and enhancing core)
- Pre-processing
 - Skull stripping
 - Co-registration
 - Intensity Normalization (mean subtraction, divide by standard deviation, re-mapping to 0-1)
- BraTS 2017 Training data (285 patients) for training (228) and validation (57)
- BraTS 2017 Validation data (46 patients) for testing

11

Real

Real

Synthesis

- Standard Evaluation metrics [4,6,7,8]
 - Peak Signal to Noise Ration (PSNR)
 - Mean Squared Error (MSE)
 - Structure Similarity Index (SSIM)

[4] Jog et al., MIA 2016
[6] Van Nguyen et al., MICCAI 2015
[7] Chartsias et al., TMI 2017
[8] Wolterink et al., SASHIMI MICCAI 2017

- Standard Evaluation metrics [4,6,7,8]
 - Peak Signal to Noise Ration (PSNR)
 - Mean Squared Error (MSE)
 - Structure Similarity Index (SSIM)
- Global metrics, Useful for quantitative evaluation of the whole MRI

[4] Jog et al., MIA 2016
[6] Van Nguyen et al., MICCAI 2015
[7] Chartsias et al., TMI 2017
[8] Wolterink et al., SASHIMI MICCAI 2017

- Standard Evaluation metrics [4,6,7,8]
 - Peak Signal to Noise Ration (PSNR)
 - Mean Squared Error (MSE)
 - Structure Similarity Index (SSIM)
- Global metrics, Useful for quantitative evaluation of the whole MRI
- Here, interested in evaluating synthesis performance in the area of tumour

- Standard Evaluation metrics [4,6,7,8]
 - Peak Signal to Noise Ration (PSNR)
 - Mean Squared Error (MSE)
 - Structure Similarity Index (SSIM)
- Global metrics, Useful for quantitative evaluation of the whole MRI
- Here, interested in evaluating synthesis performance in the area of tumour
- Tumour Segmentation (whole, core, and enhancing) evaluation
 - Dice Coefficient

•
$$DICE(A, B) = \frac{2 |A \cap B|}{|A \cup B|} * 100$$

[4] Jog et al., MIA 2016
[6] Van Nguyen et al., MICCAI 2015
[7] Chartsias et al., TMI 2017
[8] Wolterink et al., SASHIMI MICCAI 2017

Segmentation Network (S-Net)

	T1	$\mathbf{T2}$	FLAIR	T1ce	DE	\mathbf{DT}	DC
Real	\checkmark	\checkmark	\checkmark	\checkmark	68.2	87.9	75.7

✓ Real MRI

	T1	$\mathbf{T2}$	FLAIR	T1ce	DE	\mathbf{DT}	DC
Real	\checkmark	\checkmark	\checkmark	\checkmark	68.2	87.9	75.7
T1 Synthesis	•	\checkmark	\checkmark	\checkmark	67.6	87.9	75.5

✓ Real MRI

○ Synthesised MRI (RS-Net)

	T1	$\mathbf{T2}$	FLAIR	T1ce	\mathbf{DE}	DT	DC
Real	\checkmark	\checkmark	\checkmark	\checkmark	68.2	87.9	75.7
				-			
T2 Synthesis	\checkmark	\odot	\checkmark	\checkmark	66.3	87.3	75.6

✓ Real MRI

○ Synthesised MRI (RS-Net)

	$\mathbf{T1}$	$\mathbf{T2}$	FLAIR	T1ce	\mathbf{DE}	\mathbf{DT}	DC
Real	\checkmark	\checkmark	\checkmark	\checkmark	68.2	87.9	75.7
· · ·				·			
FLAIR Synthesis	\checkmark	✓	\odot	\checkmark	66.8	83.6	73.1

✓ Real MRI

○ Synthesised MRI (RS-Net)

	T1	$\mathbf{T2}$	FLAIR	T1ce	DE	\mathbf{DT}	DC
Real	\checkmark	\checkmark	\checkmark	\checkmark	68.2	87.9	75.7
				·			

T1ce Synthesis \checkmark \checkmark \checkmark \odot 24.8	 ✓ ○ 24.8 87.3 	54.0
--	-----------------------------------	------

✓ Real MRI

○ Synthesised MRI (RS-Net)

	T1	$\mathbf{T2}$	FLAIR	T1ce	DE	\mathbf{DT}	DC
Real	\checkmark	\checkmark	\checkmark	\checkmark	68.2	87.9	75.7
T1 Synthesis	\odot	\checkmark	\checkmark	\checkmark	67.6	87.9	75.5
T2 Synthesis	\checkmark	\odot	\checkmark	\checkmark	66.3	87.3	75.6
FLAIR Synthesis	\checkmark	\checkmark	\odot	\checkmark	66.8	83.6	73.1
T1ce Synthesis	\checkmark	\checkmark	\checkmark	\odot	24.8	87.3	54.0

✓ Real MRI

○ Synthesised MRI (RS-Net)

Regression-only Network (R-Net)

R-Net

	T1	$\mathbf{T2}$	FLAIR	T1ce	DE	\mathbf{DT}	DC
\mathbf{Real}	\checkmark	\checkmark	\checkmark	\checkmark	68.2	87.9	75.7
T1 Synthesis	•	\checkmark	\checkmark	√	67.6	87.9	75.5
	•	\checkmark	\checkmark	\checkmark	67.5	87.8	75.3

- ✓ Real MRI
- \odot Synthesised MRI (RS-Net)
- Synthesised MRI (R-Net)

	T1	$\mathbf{T2}$	FLAIR	T1ce	DE	\mathbf{DT}	DC
Real	\checkmark	\checkmark	\checkmark	\checkmark	68.2	87.9	75.7
T2 Synthesis	\checkmark	\odot	\checkmark	\checkmark	66.3	87.3	75.6
	\checkmark	•	\checkmark	\checkmark	66.1	87.2	75.4

- ✓ Real MRI
- Synthesised MRI (RS-Net)
- Synthesised MRI (R-Net)

	T1	$\mathbf{T2}$	FLAIR	T1ce	DE	\mathbf{DT}	DC
Real	\checkmark	\checkmark	\checkmark	\checkmark	68.2	87.9	75.7

FLAIR Synthesis	\checkmark	\checkmark	\odot	\checkmark	66.8	83.6	73.1
	\checkmark	\checkmark	•	\checkmark	62.9	81.3	71.5

- ✓ Real MRI
- \odot Synthesised MRI (RS-Net)
- Synthesised MRI (R-Net)

	T1	$\mathbf{T2}$	FLAIR	T1ce	\mathbf{DE}	\mathbf{DT}	DC
\mathbf{Real}	\checkmark	\checkmark	\checkmark	\checkmark	68.2	87.9	75.7

T1ce Synthesis	\checkmark	\checkmark	\checkmark	\odot	24.8	87.3	54.0	
	\checkmark	\checkmark	\checkmark	•	24.1	85.9	53.9	
✓ Real MRI		DE: Dice Enhance						
• Synthesised MRI (RS-Net)					DT: Dice Tumour			

• Synthesised MRI (R-Net)

DC: Dice Core

	$\mathbf{T1}$	$\mathbf{T2}$	FLAIR	T1ce	DE	\mathbf{DT}	DC
Real	\checkmark	\checkmark	\checkmark	\checkmark	68.2	87.9	75.7
T1 Synthesis	\odot	\checkmark	\checkmark	\checkmark	67.6	87.9	75.5
	•	\checkmark	\checkmark	\checkmark	67.5	87.8	75.3
T2 Synthesis	\checkmark	\odot	\checkmark	\checkmark	66.3	87.3	75.6
	\checkmark	•	\checkmark	\checkmark	66.1	87.2	75.4
FLAIR Synthesis	\checkmark	\checkmark	\odot	\checkmark	66.8	83.6	73.1
	\checkmark	\checkmark	•	\checkmark	62.9	81.3	71.5
T1ce Synthesis	\checkmark	\checkmark	\checkmark	\odot	24.8	87.3	54.0
	\checkmark	\checkmark	\checkmark	•	24.1	85.9	53.9

- ✓ Real MRI
- \odot Synthesised MRI (RS-Net)
- Synthesised MRI (R-Net)

Comparison of RS-Net against other methods

Comparison of RS-Net against other methods

• Comparison against following state-of-the-art methods:

- 2D Convolutional Neural Network (2D CNN) [7]
- Regression Ensembles with Patch Learning for Image Contrast Agreement (REPLICA) [4]
- Patch-based Location Sensitive Deep Network (LSDN) [6]

Comparison of RS-Net against other methods

• Comparison against following state-of-the-art methods:

- 2D Convolutional Neural Network (2D CNN) [7]
- Regression Ensembles with Patch Learning for Image Contrast Agreement (REPLICA) [4]
- Patch-based Location Sensitive Deep Network (LSDN) [6]

• Two Experiments:

- T1 -to- T2 synthesis
- T1 -to- FLAIR synthesis

[4] Jog et al., MIA 2016[6] Van Nguyen et al., MICCAI 2015[7] Chartsias et al., TMI 2017

Dataset and Pre-processing

- 2015 Brain Tumour Segmentation (BraTS) [12] challenge dataset
 - 4 modalities (T1, T2, FLAIR, T1c)
 - Resolution: 1x1x1 mm³
 - Dimensions: 240 x 240 x 155
 - Manual marking for 3 types of tumour (edema, necrotic core, and enhancing core)
- Pre-processing
 - Skull stripping
 - Co-registration
 - Intensity Normalization (Divide by mean)

Dataset and Pre-processing

- 2015 Brain Tumour Segmentation (BraTS) [12] challenge dataset
 - 4 modalities (T1, T2, FLAIR, T1c)
 - Resolution: 1x1x1 mm³
 - Dimensions: 240 x 240 x 155
 - Manual marking for 3 types of tumour (edema, necrotic core, and enhancing core)
- Pre-processing
 - Skull stripping
 - Co-registration
 - Intensity Normalization (Divide by mean)
- BraTS 2015 Training Low-Grade Glioma cases (54 patients)

Dataset and Pre-processing

- 2015 Brain Tumour Segmentation (BraTS) [12] challenge dataset
 - 4 modalities (T1, T2, FLAIR, T1c)
 - Resolution: 1x1x1 mm³
 - Dimensions: 240 x 240 x 155
 - Manual marking for 3 types of tumour (edema, necrotic core, and enhancing core)
- Pre-processing
 - Skull stripping
 - Co-registration
 - Intensity Normalization (Divide by mean)
- BraTS 2015 Training Low-Grade Glioma cases (54 patients)
- 5 fold cross validation with 42, 6, and 6 cases respectively for training, validation, and testing.

Evaluation Metrics

• Structure Similarity Index (SSIM)

 $\text{SSIM} = \frac{(2\mu_{x}\mu_{x\prime} + c_{1})(2\sigma_{xx\prime} + c_{2})}{(\mu_{x}^{2} + \mu_{x\prime}^{2} + c_{1})(\sigma_{x}^{2} + \sigma_{x\prime}^{2} + c_{2})}$

• Peak Signal -to- Noise Ratio (PSNR)

$$PSNR = log_{10}(\frac{MAX_I^2}{MSE})$$

T1 -to- T2 synthesis

Input T1 MRI

Synthesised T2 MRI

T1 -to- T2 synthesis

Input T1 MRI

Synthesised T2 MRI $\,$

Real T2 MRI

T1 -to- T2 synthesis

T1 -to- FLAIR synthesis

Input T1 MRI

Synthesised FLAIR MRI

T1 -to- FLAIR synthesis

Input T1 MRI

Synthesised FLAIR MRI

Real FLAIR MRI

T1 -to- FLAIR synthesis

- Proposed a 3D CNN for the combined task of Synthesis and Segmentation
 - High quality synthesis even for tumour regions

- Proposed a 3D CNN for the combined task of Synthesis and Segmentation
 - High quality synthesis even for tumour regions
- Uncertainty Measurement in synthesis using MC dropout
 - Can be communicated to clinicians

- Proposed a 3D CNN for the combined task of Synthesis and Segmentation
 - High quality synthesis even for tumour regions
- Uncertainty Measurement in synthesis using MC dropout
 - Can be communicated to clinicians
- Quantitative evaluation with downstream task of tumour segmentation

- Proposed a 3D CNN for the combined task of Synthesis and Segmentation
 - High quality synthesis even for tumour regions
- Uncertainty Measurement in synthesis using MC dropout
 - Can be communicated to clinicians
- Quantitative evaluation with downstream task of tumour segmentation
 - Real MRI can be replaced with Synthesised MRI with minimum degradation in tumour segmentation accuracy

- Proposed a 3D CNN for the combined task of Synthesis and Segmentation
 - High quality synthesis even for tumour regions
- Uncertainty Measurement in synthesis using MC dropout
 - Can be communicated to clinicians
- Quantitative evaluation with downstream task of tumour segmentation
 - Real MRI can be replaced with Synthesised MRI with minimum degradation in tumour segmentation accuracy
 - Combined Synthesis-Segmentation improves quality over only Synthesis, especially for challenging modalities like FLAIR, T1c

- Proposed a 3D CNN for the combined task of Synthesis and Segmentation
 - High quality synthesis even for tumour regions
- Uncertainty Measurement in synthesis using MC dropout
 - Can be communicated to clinicians
- Quantitative evaluation with downstream task of tumour segmentation
 - Real MRI can be replaced with Synthesised MRI with minimum degradation in tumour segmentation accuracy
 - Combined Synthesis-Segmentation improves quality over only Synthesis, especially for FLAIR, T1c
- T1c synthesis is still an open and challenging task

Questions?

T2

Real

3D visualization

T1

Synthesized

Real

3D visualization

Synthesized

Real

T1c

3D visualization

Synthesized

FLAIR

Performance of Segmentation part of RS-Net

RS-Net

Performance of Segmentation part of RS-Net

S-Net

Performance of Segmentation part of RS-Net

	T1	$\mathbf{T2}$	FLAIR	T1ce	DE	\mathbf{DT}	DC
Real	\checkmark	\checkmark	\checkmark	\checkmark	68.2	87.9	75.7
T1 Synthesis	\odot	\checkmark	\checkmark	\checkmark	67.6	87.9	75.5
	×	\checkmark	\checkmark	\checkmark	66.4	85.2	71.0
T2 Synthesis	✓	\odot	\checkmark	\checkmark	66.3	87.3	75.6
	\checkmark	×	\checkmark	\checkmark	66.5	87.0	71.1
FLAIR Synthesis	\checkmark	\checkmark	\odot	\checkmark	66.8	83.6	73.1
	\checkmark	\checkmark	×	\checkmark	70.5	82.6	74.0
T1ce Synthesis	\checkmark	\checkmark	\checkmark	\odot	24.8	87.3	54.0
	\checkmark	\checkmark	\checkmark	×	23.1	86.5	52.0

✓ Real MRI

- Synthesised MRI (RS-Net)
- \times Segmentation output of RS-Net without MR volume

DE: Dice Enhance DT: Dice Tumour DC: Dice Core

Real

Synthesis

Synthesis