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Motivation

% Lack of access to large annotated datasets: major challenges in medical imaging analysis.

% State-of-art models are based on deep learning methods, which perform well when trained on large
datasets!'!.

% Transfer learning has been explored in various applications such as classification, detection and
segmentation. See @ for a survey.

% Pathology segmentation:
> Public datasets are small. Most of the large datasets are inhouse.

Difficult to obtain ground truth.

>
> Class imbalance and inter-subject variability.
>

Leveraging models trained on large datasets in order to improve pathology segmentation results on
smaller dataset across different diseases could be impactful in medical image analysis.

[1] Ozgiin Cicek et al, MICCAI 2016 [2] Veronika and et al., MIA 2019
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% Natural images: fine-tuning just last few layers helps. Is it same case in medical domain?

%  We explore several fine-tuning strategies to see how to best leverage the source model and
adapt it to the target dataset of varying sizes.
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%  FT_AIll: The whole pretrained network is fine-tuned.
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Data
Source: Multiple Sclerosis Dataset

% Proprietary, multi-modal, multi-site, multi-scanner

clinical trial dataset.

< 4 modalities (T1w, T2w, FLAIR, and T1 post-Gad)

%  Resolution: 1x 1 x 1T mm?3

« Dimensions: 229x193x193.

<  Total patient scans: 3630 multimodal MRI

< T2 binary lesion segmentation mask provided.
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Source: Multiple Sclerosis Dataset Target: BraTS 2018 challenge Dataset!"

% Proprietary, multi-modal, multi-site, multi-scanner % 4 modalities (T1, T2, FLAIR, T1c)

clinical trial dataset. )
<%  Resolution: 1x1x1 mm?3

% 4 modalities (T1w, T2w, FLAIR, and T1 post-Gad) & Dimensions: 155 x 240 x 240

o%

Resolution: 1 x 1 x 1 mm?3

9,
%

% Manual marking for 3 types of tumor (edema, necrotic
Dimensions: 229x193x193. core, and enhancing core)

Total patient scans: 3630 multimodal MRI % BraTS 2018 Training data (285 patients) for training
(Ground Truth available)

9, 9,
% %

9,
%

T2 binary lesion segmentation mask provided.

<

L)

»  BraTS 2018 Validation data (66 patients) for testing
(Ground truth not provided)

L)
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Pre-training the UNet with source MS data for T2 lesion segmentation.

ol Training

> MS Data (%( patient scans)
20y Validation

> Weighted binary cross entropy was used as loss function.

> An AUC of 0.77 was obtained on the validation (test) set.
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Four-fold cross validation
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Quantitative RESUltS (on BraTS 2018 Validation set)
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>  FT-All outperforms the baseline in almost every case.
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>  FT-All outperforms the baseline in almost every case.

>  Best when the number of tumor cases is extremely low, i.e. 20.
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Quantitative RESUltS (on BraTS 2018 Validation set)
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>  FT-All outperforms the baseline in almost every case,
>  Best when the number of tumor cases is extremely low, i.e. 20.
> As the number of brain tumor samples increase, the gain of FT-All over baseline diminishes.
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Qualitative Results

> FT-All is able to capture sub-structures
of tumor better than the other methods.
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FT-All is able to capture sub-structures _ , oo b > .
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HGG

Performance is better on the HGG over , i
the LGG cases, as more HGG cases are - " &} @M Q
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present in the training dataset.
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We observed that fine-tuning the whole network works best, especially when very small target
datasets are available.
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We also observed that as in case of natural images, where fine-tuning just the last few layers
works, it's not the same case in medical domain.
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Conclusions and Discussions

%  We explored different strategies for transfer learning across diseases for the task of focal
pathology segmentation.

7
%

We observed that fine-tuning the whole network works best, especially when very small target
datasets are available.

7/
%

We also observed that as in case of natural images, where fine-tuning just the last few layers
works, it's not the same case in medical domain.

%  We motivate public release of models trained on large datasets.
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Data Preprocessing

Source: Multiple Sclerosis Dataset
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Brain extraction!?

N3 bias field inhomogeneity correction®
Nyul image intensity normalization!
Registration to the MNI-space.

Intensity Normalization (mean subtraction,
divide by standard deviation, re-mapping to
0-1)

Cropped and zero-padded to 240x192x192.

[1] Menze et al, TMI 2015
[2] Smith et al, HBM 2002
[3] Sled et al TMI 1998

[4] Nyul et al TMI 2000
[5] Avants et al Neuroimage 2011
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Target: BraTS 2018 challenge Dataset [

Skull stripping
Co-registration

Registration to same space as source data
using ANTSs tooll®

Intensity Normalization (mean subtraction,
divide by standard deviation, re-mapping to
0-1)

Cropped and zero-padded to 240x192x192.
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