Improving Pathological Structure Segmentation Via Transfer Learning Across Diseases

Barleen Kaur^{1,2,4}, Paul Lemaitre², Raghav Mehta², Nazanin Mohammadi-Sepahvand², Doina Precup^{1,4}, Douglas Arnold^{3,5} and Tal Arbel²

¹ School of Computer Science, McGill University, ²Centre for Intelligent Machines, McGill University, ³Montreal Neurological Institute, McGill University, ⁴Mila Quebec Al Institute, Canada, ⁵NeuroRx Research, Montreal, Canada

1. Motivation and Objective

- ➤ Major challenges in pathology segmentation include:
 - Lack of access to large annotated datasets.
 - Existing small public datasets suffer from large class imbalance and inter-subject variability issues.
- > State-of-art models are based on deep learning methods, which perform well when trained on large datasets^[1].
- > Leveraging models trained on large datasets in order to improve results on smaller dataset could be impactful.

 We explore several fine-tuning strategies to best leverage source model for target dataset of varying sizes.

> First Phase: Pretraining the UNet^[1] with source MS dataset.

Second Phase:

- Replacing last three layers of the pre-trained MS network with new layers.
- Fine-tuning with target brain in three different tumor ways:
 - **FT_LastThree**: only the newly added layers are re-trained.
 - FT Decoder: only decoder is fine-tuned.
 - **FT_All**: the whole network is fine-tuned.

3. Data and Experimentation

Source Data: Multiple Sclerosis (MS) dataset

- Proprietary, multi-modal, multi-site, multi-scanner clinical trial dataset.
- 3630 Multi-modal MRI (T1w, T2w, FLAIR, and T1 post-Gad).
- For our first phase, we use:
 - 80% of available data to train 3D UNet.
 - Remaining 20% of data to validate 3D UNet.
- Weighted Binary Cross Entropy loss.
- Evaluation metric: ROC curves for T2 lesion segmentation.
- An AUC of **0.77** is obtained on the validation set.

Target Data: Brain Tumor dataset (BraTS 2018 challenge^[2])

2. Proposed Method

- Multi-modal MRI (T1, T2, FLAIR, and T1ce).
- Registration to same space as source data using ANTs tool^[3].
- For **20**, **50**, **100**, **150** brain tumor samples (subset of BraTS 2018 training set):
 - Transfer learning: FT_LastThree, FT_Decoder, FT_All.
 - Baseline: Training from scratch with brain tumor MRI scans.
- Weighted Cross Entropy loss.
- > Four-fold cross validation is performed.
- A **local validation set** of 50 samples is used to select operating point.

4. Quantitative Results

Dice scores obtained on the Brats 2018 Validation set used for testing.

High gain when number of tumor cases is extremely low, i.e. 20.

Gain of FT-All over baseline diminishes with more samples.

5. Qualitative Results (fine-tuning with 20 brain tumor samples)

- capture sub-structures tumor better than other methods.
- Performance is better on HGG cases over LGG, as more HGG cases are present in training set.

6. Conclusion

- We explored different strategies for transfer learning across diseases for the task of focal pathology segmentation.
- We observed that fine-tuning the whole network outperforms baseline and other fine-tuning methods, especially when very small target datasets are available, unlike in case of natural images where fine-tuning just last few layers helps.
- We encourage public release of models trained on large datasets.

FT-All outperforms the baseline in almost every case.

References:

- [1] Özgün Çiçek et al., 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation, MICCAI 2016.
- [2] Menze et al., The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS), TMI 2015.
- [3] Avants et al. A reproducible evaluation of ANTs similarity metric performance in brain image registration, Neuroimage 2011.

Acknowledgement:

This work was supported by a Canadian Natural Science and Engineering Research Council (NSERC) Collaborative Research and Development Grant, Synaptive Medical and an award from the International Progressive MS Alliance.

