NG s Evaluating the Fairness of Deep Learning Uncertainty Estimates in Medical Image Analysis
MIDL ﬁ:ﬁ "-";":"“Ei Raghav Mehta 2, Changjian Shui %%, and Tal Arbel 2

CENTRE ror

E* =n & INTELLIGENT
Nashville 2023 [Erwy:a ' Centre for Intelligent Machines, McGill University, Montreal, Canada > MILA Quebec Al Institute, Montreal, Canada VIACHINES

(1) Introduction

** Deployment of machine learning models for medical image analysis requires: (i) fairness/robustness across different subpopulation and (ii) uncertainty quantification to express model confidence
»* Goal: Analyze effect of popular fairness models to overcome biases in terms of both absolute performance and uncertainty quantification

(2) Background: Fairness evaluation (3) Proposed Evaluation: Fairness and Uncertainty
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(4) Experiments and Results

< Evaluated bias mitigation (fairness) models: (a) Baseline-Model: trained on a dataset without consideration of any sub-group information. « Uncertainty quantification method: Ensemble Dropout [3]
(b) Balanced-Model: trained on a balanced dataset across sub-groups [1]. % Uncertainty Measure: Entropy (for classification and segmentation);
(c) GroupDRO-Model: trained with GroupDRO loss [2] to re-weigh the loss for each subgroup. total variance (for regression)
Skin Lesion Classification Brain Tumour Segmentation Clinical Score Regression
[t' Dataset: ISIC 2019 [4] Sensitive Attribute.: Age (>= 60 and <60) ** Dataset: BraTS 2019 [5] *»» Dataset: ADNI [6]
» Evaluation Metric: overall accuracy, and class-level accuracy for nevus. *» Sensitive Attribute: Enhancing Tumour Size *» Sensitive Attribute: Age (<70 and >=70)
(a) Overall Accuracy (b) Class-Level Accuracy for nevus (>= 7000mI° and <7000m|3) ¢ Evaluation Metric: Root Mean Squared Error
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