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(1) Introduction
❖ Deployment of machine learning models for medical image analysis requires: (i) fairness/robustness across different subpopulation and (ii) uncertainty quantification to express model confidence 
❖ Goal: Analyze effect of popular fairness models to overcome biases in terms of both absolute performance and uncertainty quantification

(3) Proposed Evaluation: Fairness and Uncertainty(2) Background: Fairness evaluation

(5) Conclusion
❖ Experiments indicate that popular bias mitigation methods do not work well for all medical image 

analysis tasks.
❖ Mitigating fairness in terms of performance can come at the cost of poor uncertainty estimates.
❖ Future work should develop methods that tries to mitigate both absolute performance and 

uncertainty differences across subgroups.
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(6) Reference

(4) Experiments and Results
❖ Evaluated bias mitigation (fairness) models: (a)  Baseline-Model: trained on a dataset without consideration of any sub-group information.

                                                                                 (b)  Balanced-Model: trained on a balanced dataset across sub-groups [1].
                                                                                 (c)  GroupDRO-Model: trained with GroupDRO loss [2] to re-weigh the loss for each subgroup.

❖ Uncertainty quantification method: Ensemble Dropout [3]
❖ Uncertainty Measure: Entropy (for classification and segmentation); 

total variance (for regression)

Skin Lesion Classification Brain Tumour Segmentation Clinical Score Regression
❖ Dataset: ISIC 2019 [4]                    Sensitive Attribute.: Age (>= 60 and <60)
❖ Evaluation Metric: overall accuracy, and class-level accuracy for nevus.

❖ Dataset: BraTS 2019 [5]
❖ Sensitive Attribute: Enhancing Tumour Size 

(>= 7000ml3 and <7000ml3)
❖ Evaluation Metric: Dice for Enhancing Tumour

❖ Dataset: ADNI [6] 
❖ Sensitive Attribute: Age (<70 and >=70)
❖ Evaluation Metric: Root Mean Squared Error 

(RMSE) for Mini Mental State Examination  
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