RS-Net: Regression-Segmentation 3D CNN for
Synthesis of Full Resolution Missing Brain MRI in
the Presence of Pathologies
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Abstract—Accurate synthesis of a full 3D MR image containing
tumours from available MRI (e.g. to replace an image that is cur-
rently unavailable or corrupted) would provide a clinician as well
as downstream inference methods with important complementary
information for disease analysis. In this paper, we present an end-
to-end 3D convolution neural network that takes a set of acquired
MR image sequences (e.g. T1, T2, T1ce) as input and concurrently
performs (1) regression of the missing full resolution 3D MRI (e.g.
FLAIR) and (2) segmentation of the tumour into subtypes (e.g.
enhancement, core). The hypothesis is that this would focus the
network to perform accurate synthesis in the area of the tumour.
Experiments on the BraTS 2015 and 2017 datasets [1] show that:
(1) the proposed method gives better performance than state-of-
the art methods in terms of established global evaluation metrics
(e.g. PSNR), (2) replacing real MR volumes with the synthesized
MRI does not lead to significant degradation in tumour and sub-
structure segmentation accuracy. The system further provides
uncertainty estimates based on Monte Carlo (MC) dropout [2] for
the synthesized volume at each voxel, permitting quantification
of the system’s confidence in the output at each location.

Index Terms—Deep Learning, Image Synthesis, Brain MRI,
Pathologies, Brain Tumour, Multiple Sclerosis

I. INTRODUCTION

HE presence of a variety of different Magnetic Resonance
(MR) sequences (e.g. T1, T2, Fluid Attenuated Inverse
Recovery (FLAIR)) improves the analysis in the context of
neurological diseases such as multiple sclerosis and brain
cancers, because different sequences provide complementary
information. In particular, the accuracy of detection and seg-
mentation of lesions and tumours greatly increases should
several sequences of MR be available [3], as different se-
quences assist in differentiating healthy tissues from focal
pathologies. However, in real clinical practice, not all MR
image sequences are always available for each patient for
a variety of reasons, including cost or time constraints, or
at times, images are available but not usable, for example
due to corruption from noise or patient motion. As such,
both clinical practice and automatic segmentation techniques
would benefit greatly from the synthesis of one or more of
the missing 3D MR image sequences based on the others
provided [4]. However, synthesis of full 3D brain MR image is
challenging especially in the presence of pathology as different
MR sequences represent pathology in a different way.
Recently, modality synthesis has gained some attention from
the medical image analysis community [S]], [6], [7]. Several
approaches have been explored, such as patch-based random
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forest [5]] and sparse dictionary reconstruction [6]. Regression
Ensembles with Patch Learning for Image Contrast Agreement
(REPLICA) [5] was developed to synthesize T2-weighted
MRI from T1-weighted MRI using the bagged ensemble of
random forests based on nonlinear patch regression. Given the
success of Convolutional Neural Networks (CNNs) [8] and
Generative Adversarial Networks (GANs) [9]] for image-to-
image translation in the field of computer vision, several recent
2D CNN [10], [7] and 2D GANs [11] have been developed for
modality synthesis in the context of medical imaging, showing
promising results for synthesis of healthy subject MRI. A
patch-based Location Sensitive Deep Network (LSDN) [7]] was
developed to combine intensity and spatial information for
synthesizing T2 MRI from T1 MRI and vice versa. A 2D CNN
model was developed to generate 2D synthesized images with
missing input MRI [10]. Quantitative analysis showed superior
performance over competing methods based on global image
metrics (PSNR and SSIM). However, the performance of the
method in the area of focal pathology was not examined.

In this paper, an end-to-end 3D CNN is developed that
takes as input a set of acquired MRI sequences of patients
with tumours and simultaneously performs (1) regression
to generate a full resolution missing 3D MR modality and
(2) segmentation of the brain tumour into subtypes. The
hypothesis is that by performing regression and segmentation
concurrently, the network should produce full-resolution, high
quality 3D MR images, particularly the area of the tumour.
The network is trained and tested on the MICCAI 2015 and
2017 BraTS datasets [1]], as well as a large multi-site, multi-
scanner, proprietary dataset of MS patient MRI. In the first set
of experiments, the framework is evaluated against state-of-
the-art synthesis methods [J5]], [7], [10] based on global image
metrics used in previous work [10]], where it is shown to give
better performance compared all reported results. The second
set of experiments evaluate the synthesis quality at patholog-
ical locations, by examining its performance on subsequent
independent downstream tasks, namely tumour segmentation.
Results show that real MR images can be swapped with
the generated synthesized T1, T2, and FLAIR MR images
with minimal loss in tumour segmentation performance. The
network also quantifies the uncertainty of the regressed syn-
thetic volumes through Monte Carlo dropout [2]]. This per-
mits the confidence in the synthesis results to be conveyed
to radiologists and clinicians and to automatic downstream
methods that would use the synthesized volumes as inputs.
In the last set of experiments, we also evaluate the ability of
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Fig. 1: Proposed Regression-Segmentation CNN architecture (RS-Net): (1) A 3D U-net, (2) Regression and (3) Segmentation
convolution blocks. The model takes as input several full 3D MR image sequences, synthesizes the missing 3D MRI, while
concurrently generating the multi-class segmentation of the tumour into sub-types.

RS-Net to synthesize missing modalities in case of Multiple
Sclerosis (MS) patient MRIs. We evaluate the performance
with a downstream MS T2 lesion segmentation/detection task.
Results concur the findings reported for brain tumour seg-
mentation task, and show that indeed missing modalities can
be replaced by RS-Net synthesized modalities with minimal
performance degradation.

II. REGRESSION-SEGMENTATION CNN ARCHITECTURE

A flowchart of the proposed Regression-Segmentation CNN
architecture (RS-Net) can be seen in Figure [I}] The network
consists of three main components: (1) a modified 3D U-net
[12], (2) regression convolution block for synthesizing image
sequence, and (3) segmentation convolution block for multi-
class tumour segmentation. RS-Net takes as input full 3D
volumes of all available sequences of a patient. The U-net
generates an intermediate latent representation of the inputs
which is provided to the regression and the segmentation
convolution blocks. These then generate synthesis of the
missing 3D MR image sequences and multi-class segmentation
of tumours into sub-types, at the same resolution. The U-net
learns latent representation which is common to both tumour
segmentation and synthesis, with focus on high accuracy in
the area containing tumour structures. In addition to the U-
net output, the regression block is also provided with one
of the input MRIs, which will provide necessary brain MR
context to the regression block. The architecture details are
now described.

The 3D U-net is similar to the one proposed in [12], with
some modifications. The U-net consists of 4 resolution steps
for both encoder and decoder paths. At the start, we use 2
consecutive 3D convolutions of size 3x3x3 with k filters, where
k denotes the user-defined initial number of convolution filters.
Each step in the encoder path consists of 2 3D convolutions
of size 3x3x3 with k x 2™ filters, where n denotes the U-net
resolution step. This is followed by maxpooling of size 2x2x2.

At the end of each encoder step, instance normalization [[13]]
is applied, followed by dropout [[14]] with 0.1 probability. In
the decoder path at each step, 3D transposed convolution of
size 5x5x5 is applied, with 2x2x2 stride and k * 2™ filters for
the upsampling task. The output of the transposed convolution
is concatenated with the corresponding output of the encoder
path. This is, once again, followed by instance normalization
and Dropout with 0.1 probability. Finally, 2 3D convolution
of size 3x3x3 with k x 2" filters are applied. Rectified linear
unit is chosen as a non-linearity function for every convolution
layer.

Each of the segmentation and regression blocks contain 4
convolution layers. The first convolution layer is of size 3x3x3,
and the rest are of size 1x1x1. The first three convolution
layers have k x4, k % 2 and k filters. In the regression block,
the last layer has just 1 filter, while, for the segmentation block,
there are C filters in the last layer, where C' denotes the total
number of classes for the segmentation task.

Weighted Mean Squared Error (W-MSE) loss is used for
the synthesis task, and weighted Categorical Cross Entropy
(W-CCE) loss for segmentation. Here, the weights are defined
such that the weight increases whenever there are fewer voxels
in a particular class.
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where, yi, pi, xi, &%, and w! denote true label, predicted
label, true voxel values, predicted voxel value, and the weight
for voxel n of volume ¢, respectively. w; denotes the weight
of class I. m; is total number of voxels of I** class in the



T2 |REPLICA [5] LSDN [7] 2D-CNN [10] RS-Net (proposed)
SSMI |0.901 +0.01 0.909 +0.02 0.929 +0.17 0.934 +0.02
PSNR [28.62 +1.69 30.12 £1.62 30.96 +1.85 31.13 +1.78
FLAIR REPLICA [5] LSDN [7] 2D-CNN [10] RS-Net (proposed)
SSMI |0.870 +0.01 0.887 +0.01 0.897 +0.01 0.900 +0.01
PSNR |28.32 +1.38 29.68 +1.56 30.32 +£1.61 30.88 +1.84

TABLE I: Quantitative results (mean =+ std) for T1-to-T2 (top) and T1-to-FLAIR (bottom) synthesis based on PSNR and
SSIM. Higher values indicate better performance. Absolute highest performing results seen in bold.

training dataset. w; are decayed over each epoch ep with a
rate of r € [0, 1]. It should be noted that w; converges to 1
as ep becomes large. The final loss function for the network,
L?, (for volume 1) is a weighted combination of both of these
loss functions:

L' = \; (W-MSE') + \o(W-CCE"). (4)

Given the challenges associated with regressing a synthe-
sized volume, errors are bound to exist. As such, deterministic
outputs present dangers to subsequent clinical decisions as
well as to downstream automatic methods that make use of
the results. In this work, the network output is augmented
with uncertainty estimates based on Monte Carlo dropout [2].
During testing, N Monte Carlo (MC) samples of the output are
acquired by passing each set of input volumes NV times through
the network to predict N different synthesized output MR
volumes with probability of randomly dropping any neuron
of the network equal to the dropout rate. Uncertainty in the
synthesized volume, during testing, is estimated based on the
variance of the MC samples at every voxel.

III. EXPERIMENTS AND RESULTS

We now evaluate the performance of the RS-Net using
two sets of experiments. In the first set of experiments, we
compare the quality of the synthesized volume generated by
RS-Net against other methods [10], [5], [7] using PSNR and
SSIM on 2015 MICCALI BraTS dataset [[1]]. In the second set
of experiments, we evaluate the quality of the synthesized
volumes in a downstream task of tumor segmentation on 2017
MICCALI BraTS datasets [1].

RS-Net uses 4 initial convolutional filters and 4 steps for U-
net encoder and decoder paths.This results in a network with
a total of 674455 learnable parameters. Values of A; and A
in the loss function (Eq. , to combine CCE and MSE, were
fixed to 1.0 and 0.1 respectively based on experimentation
evidence. The networks were trained on a NVIDIA Titan Xp
GPU for 240 epochs. Approximate training time was 3 days.
The networks were trained with batch size of 1, using Adam
optimizer [15] with the following hyperparameters: learning
rate = 0.0002, 51 = 0.9, B2 = 0.999 and ¢ = 107, During
testing time, a total of 20 samples of the output were generated
to estimate the uncertainty in the synthesized volumes.

(a) Real T2 (b) Synthesized T2 (c) Real FLAIR (d) Synthesized FLAIR

Fig. 2: Example slice from synthetic MR volumes generated
by the proposed RS-Net on BraTS 2015 dataset for T1-to-T2
and T1-to-FLAIR synthesis.

A. Comparison of RS-Net synthesis results against other meth-
ods

In order to compare the quality of the synthesized volumes
produced by RS-Net against other state-of-the-art methods,
namely REPLICA [5], LSDN [7], and 2D CNN [10], we train
two different RS-Nets for T2 and FLAIR synthesis from T1
MRI, as done by Chartsias et al. [10]. We use the evaluation
metrics, SSIM [16]] and PSNR, defined in [10], to evaluate the
quality of the synthesized volumes.

Given a ground-truth volume X and its corresponding
synthesized volume X, SSIM is computed as

(uxpg +c1)(20y 5 +c2)

SSIM(X,X) =
&) =@ T2 v + o o)

o)

where px and 0% are mean and variance of volume X and
0 x ¢ is the covariance between X and X.
PSNR is computed as

MAX?
VSE ) (6)
where M AX is the maximum intensity of the volume and
MSE is the mean squared error between volumes X and X.

In order to compare our results to those in the paper [LO],
experiments were performed on the 2015 MICCAI BraTS
training dataset [1]]. This dataset consists of High-Grade
Glioma (HGG) and Low-Grade Glioma (LGG) cases. 54 LGG
cases were acquired with T1, T2, Tlce, and FLAIR. Four
tumour sub-classes were defined. Volumes are skull-stripped,
co-registered, and interpolated to 1mm3 voxel dimension.
Each volume is of size 240 x 240 x 155. We follow the same
pre-processing steps followed in [10], where we normalize
each volume by dividing by the volume’s average intensity.
Following [10], we perform 5-fold cross validation on the
dataset (LGG cases). Here, for each cross-validation fold, the
dataset is divided into three sets, namely, training, validation,

PSNR(X,X) = 10log,(



T1 T2 FLAIR T1ce DE DT DC
Real v v v v 68.2 £31.0 87.9 £09.8 75.7 £23.1
T1 Synthesis O} v v v 67.6 £31.2 87.9 +£09.8 75.5 £23.1
T2 Synthesis v ©) v v 66.3 £32.1 87.3 £11.4 75.6 £23.6
FLAIR Synthesis |v/ v O) v 66.8 £31.8 83.6 £10.7 73.1 £24.7
T1ce Synthesis |v v v ® 24.8 £20.2 87.3 £10.0 54.0 £19.9

TABLE II: Comparison of multi-class brain tumour segmentation based on S-Net on the BraTS 2017 Validation dataset.
The results using all 4 real MRI volumes are compared against replacing 1 real MRI volume with a synthesized MRI volume
produced by RS-Net. Notation: Real MR volume (v"), and synthesized MR volume using RS-Net (®). Quantitative segmentation
results based on Dice coefficients (mean = std) for: enhancing tumor (DE), whole tumor (DT), and tumor core (DC). Higher

values indicate better performance.

Fig. 3: Example slice from synthetic MR volumes generated
using the proposed RS-Net along with its associated uncertain-
ties. Real MRI (Row 1); synthesized volumes (Row 2) and its
associated uncertainty (Row 3) produced as mean and variance
across 20 MC dropout samples. Columns from left to right:
T1, T2, Tlce, and FLAIR. Notice that uncertainties are highest
where predicted tumour enhancements in Tlce are incorrect.

and testing. Each set consists of 42, 6, and 6 volumes respec-
tively.

Quantitative comparison of all different methods is given in
Table[l] It should be noted that we didn’t reproduce the results
for other methods and instead report them as listed in [10].
Results indicate that RS-Net performs slightly better than other
methods based on the global metrics of PSNR and SSIM, for
both T1-to-T2 and T1-to-FLAIR synthesis. The results also
show the advantage of using the proposed 3D CNN over 2D
CNN. An example showing qualitative results based on RS-
Net for both T2 and FLAIR synthesis on a testing volume
is shown in Figure [2] Note that the resulting MR images are
visually similar to the real images, particularly in the area of
the tumour.

B. Evaluation of RS-Net synthesis results on downstream
tumour segmentation task

The metrics used in the previous section can be useful in
assessing global synthesis quality, but in the context of vol-
umes with pathological structures such as lesions or tumours
synthesis quality assessment should focus on the pathological
areas. To this end, we quantitatively evaluate the synthesis
performance based on their effect on downstream method,
tumour segmentation and tumour sub-class segmentation. To
this end, we train a new segmentation CNN, for the specific
task of multi-class tumor segmentation (referred to as S-Net).
This network is similar to the RS-Net but modified such that
the synthesis convolution block is removed. S-Net is trained
using all 4 real MR volumes with weighted CCE as the loss
function. To evaluate the quality of the synthesized volume,
one of the real MR volumes is swapped with the synthesized
one and the segmentation accuracy is measured. Note that we
do not retrain the S-Net with the synthesized volume. This
allows us to measure quality of the synthesized volumes in
comparison to the real volumes.

1) Dataset and Pre-processing:: The 2017 MICCAI BraTS
[[1] datasets were used for all the experiments in this section.
The BraTS training dataset was used to train the networks.
This dataset is comprised of 210 HGG and 75 LGG patients
with T1, T1 post contrast (Tlce), T2, and FLAIR MRI for
each patient, along with expert tumor labels for each of 3
classes: edema, necrotic/non-enhancing core, and enhancing
tumor core. 228 volumes were randomly selected for training
the network and another remaining 57 for network validation.
A separate BraTS 2017 validation dataset, held out during
training, was used to test the synthesis and segmentation
performance. This dataset contains 46 patient multi-channel
MRI (with no labels provided). The BraTS challenge provided
pre-processed volumes that were skull-stripped, co-aligned,
and resampled to 1 mm3 voxel volume. The intensities
were additionally rescaled using mean subtraction, divided by
the standard deviation, and rescaled from O to 1 and were
cropped to 184 x 200 x 152. For this context, the additional
complementary input presented to the regression block (see
Figure 3)) for T1, T2, Tlce, and FLAIR sequences were
Tlce, FLAIR, T1, and T2 respectively. This was chosen as
Tlce is the gadolinium enhanced version of T1, and FLAIR
is the fluid attenuated version of T2.



T1 T2 FLAIR Tlce DE DT DC
Real v v v v 68.2 +31.0 87.9 +09.8 75.7 £23.1
T1 Synthesis |©® v v v 67.6 +£31.2 87.9 £09.8 75.5 £23.1
. v v v 67.5 +£31.3 87.8 +£09.9 75.3 £23.3
T2 Synthesis |V ©) v v 66.3 +32.1 87.3 £11.4 75.6 +£23.6
v ) v v 66.1 +£32.0 87.2 £11.9 75.4 +23.8
FLAIR Synthesis |v/ v ©® v 66.8 +£31.8 83.6 £10.7 73.1 £24.7
v v . v 62.9 £33.3 81.3 £174 71.5 £25.8
Tlce Synthesis |V v v ® 24.8 £20.2 87.3 £10.0 54.0 £19.9
v v v . 24.1 £22.1 859 £11.0 53.9 £234

TABLE III: Comparison of multi-class brain tumour segmentation results based on S-Net on the BraTS 2017 Validation dataset,
where each real MR input volume is replaced by its corresponding synthesized MR volume generated by either RS-Net or
R-Net in a leave-one-out fashion. Notation: Real MR volume (v'), synthesized MR volume using RS-Net (®), and R-Net (e).
Quantitative segmentation results based on Dice coefficients (mean =+ std) for: enhancing tumor (DE), whole tumor (DT), and

tumor core (DC). Higher values indicate better performance.

2) Qualitative Evaluation:: Synthesis MR volumes pro-
duced in a leave-one-out approach by 4 different RS-Nets
such that three real MR sequences are used to synthesize the
fourth (see Figure [3). The results indicate that the network is
able to produce high-quality, high-resolution, 3D synthesized
MR volumes, particularly for T1 and T2 sequences, and
even for FLAIR. As Tlce shows enhancement within the
tumour based on injection of a contrast agent, it was not
expected to be easily synthesized from other sequences and
error resulted. However, the system indicates locations where
the network is uncertain about the regressed output. Qualitative
results indicate that errors within the tumour enhancement
have associated relatively high uncertainties. This suggests
that these uncertainties can be communicated to a clinician or
radiologist to indicate trustworthy regions of the synthesized
images, and that automatic downstream methods using the
synthesized volumes can focus computations on the areas of
high confidence, which should be explored in future work.

3) Replacing real with synthetic MRI Volumes:: In Table
we compare the tumour segmentation using S-Net in two
different testing scenarios, (i) all 4 real MR volumes are
provided as input and (ii) 1 real MR volume is replaced with
synthesized MR volume for each sequence generated by RS-
Net, in turn. We train 4 different RS-Nets to synthesize 4
MR image sequences, where 3 real sequences are presented
as input to RS-Net to synthesize the fourth. The synthesized
MR volume, along with the 3 real corresponding MR volumes,
were then presented to the S-Net previously trained on all
four real MRIs. This will allow us to measure quality of the
synthesized volume in comparison to the real volume. The
resulting labels for BraTS 2017 validation set were uploaded to
the BraTS Challenge server, where quantitative segmentation
results were provided based on the Dice coefficients for:
whole tumor, enhancing tumor, and tumor core. These results
(Table indicate that by swapping out real MR volumes
with the synthesized T1 or T2 MR volumes generated by
the RS-Net leads to comparable brain tumour segmentation
performance based on all three reported Dice metrics. For the
slightly harder problem of FLAIR synthesis, results indicate a

small degradation in tumour segmentation performance for all
three Dice metrics. T1ce synthesis results in no loss of whole
tumour segmentation performance, but, as predicted, led to a
significant reduction in performance in terms of enhancement
and necrotic core. This was expected as Tlce is a challenging
MRI to synthesize due to its reliance on a contrast agent, which
is not used by any other MR sequences.

4) Effectiveness of combined Regression-Segmentation
task:: RS-Net has two output streams for synthesis and
segmentation tasks. To check how RS-Net performs in com-
parison to a network which is trained only for the task of
synthesis, we train a new network (R-Net) which is similar
to RS-Net but modified such that the segmentation block is
removed as well as the additional input to the regression
block, and training is based only on weighted MSE. R-Net
was trained for the synthesis of all 4 MR image sequences
separately, in a leave-one-out approach, and tested for tumor
segmentation using S-Net on the BraTS validation dataset
exactly as described above. From Table we can observe
that R-Net performs comparably to RS-Net, when T1 and T2
are synthesized but shows a small degradation in performance
for FLAIR and Tlce synthesis on all three Dice metrics. This
shows that performing synthesis and segmentation together
allows the network to focus more on tumour part, and in turn
gives better quality of the synthesized volume, especially for
FLAIR and Tlce.

5) Performance of Segmentation part of RS-Net:: One of
the advantages of the RS-Net is that, in addition to MRI
synthesis, it also provides tumour segmentation labels. In
this section, we will analyze this segmentation part of RS-
Net (Figure [I] (2)). Table indicates that the segmentation
performance based on RS-Net directly is lower than the results
based on using all 4 real MR volumes in S-Net, but is
generally lower in comparison to the segmentation results
when synthesized MR volumes generated by RS-Net is used
in place of a real MR volumes. This trend is consistent across
all MR image sequences for all three Dice metrics, except
for FLAIR where the enhancing and core tumour Dice is



T1 T2 FLAIR Tlce DE DT DC
Real v v v v 68.2 +31.0 87.9 +09.8 75.7 £23.1
T1 Synthesis |©® v v v 67.6 +£31.2 87.9 £09.8 75.5 £23.1
X v v v 66.4 +£33.0 852 £15.3 71.0 £27.4
T2 Synthesis |V ©) v v 66.3 +32.1 87.3 £11.4 75.6 +£23.6
v X v v 66.5 +32.3 87.0 £10.6 71.1 £28.4
FLAIR Synthesis |v/ v ©® v 66.8 +£31.8 83.6 £10.7 73.1 £24.7
v v X v 69.0 £31.0 81.7 £15.1 724 £28.8
Tlce Synthesis |V v v ® 24.8 £20.2 87.3 £10.0 54.0 £19.9
v v v X 23.1 £19.8 86.5 £10.8 52.0 £20.8

TABLE IV: Comparison of multi-class brain tumour segmentation results based on S-Net against the results generated directly
from the segmentation module of RS-Net for the BraTS 2017 Validation dataset. Notation: Real MR volume (v"), synthesized
MR volume using RS-Net (®), and segmentation output of RS-Net without MR volume (). Quantitative segmentation results
based on Dice coefficients (mean =4 std): enhancing tumor (DE), whole tumor (DT), and tumor core (DC). Higher values

indicate better performance.

higher for segmentation directly from the RS-Net over the
segmentation results from S-Net with a synthesized input (for
unknown reasons).

C. Evaluation of RS-Net synthesis results for MS patient MRIs

MS is a chronic, inflammatory demyelinating disease of
the central nervous system with presently no known cure.
The presence of lesions in MRI is one of the hallmarks of
MS. As a result, MRI has been used for diagnosis and to
monitor disease progression and treatment efficacy. Similar
to brain tumours, segmentation of T2 lesion, which is useful
for staging MS patients, requires availability of multiple MR
sequences like FLAIR, T2, T2, PDw etc. In particular FLAIR
or T2 MR images are routinely used for visualization and
segmentation of T2 lesion as they appear hyperintense in
FLAIR/T2 images. In this section, we validate the usefulness
of RS-Net by synthesizing FLAIR or T2 images from other
modalities available, and check its effectiveness by evaluating
it on a downstream T2 lesion segmentation/detection task.

We train two different RS-Net to synthesize FLAIR and
T2 MR sequence from the other available MR sequence
(T1,T2,PDw for FLAIR synthesis and T1,FLAIR,PDw for
T2 synthesis). We train a S-Net on all 4 real MR sequences
and at test time replace one of them (FLAIR or T2) with
the synthesized one. This allows us to measure quality of
the synthesized volumes in comparison to the real volumes.
Similar to Sec[lII-B] we compare this against R-Net.

The method was evaluated on a proprietary, multi-site,
multi-scanner, clinical trial dataset of 1064 Relapsing-
Remitting MS (RRMS) patients, scanned annually over
a 24-month period. T1, T2, FLAIR, and PDW MRI
sequences were acquired at a Imm x Imm x 3mm
resolution and pre-processed with brain extraction, N3
bias field inhomogeneity correction, Nyul image intensity
normalization, and registration to the MNI-space. Ground
truth T2 lesion segmentation masks were provided with
the data. These were obtained using a proprietary approach
where the result of an automated segmentation method was

manually corrected by expert human annotators. All networks
(RS-Net/R-Net/S-Net) were trained on 65% of the subjects,
with 17.5% held out for validation and 17.5% for testing.

Since the downstream outcome of interest is the accurate
detection of T2 lesions, we evaluate the performance of
networks based on lesion-level True Positive Rate (TPR) and
False Detection Rate (FDR). To obtain lesion-level detections
from the voxel-based segmentations, a connected component
analysis is performed to group lesion voxels together in an
18-connected neighbourhood. A true positive (TP) lesion is
detected when the segmentation, including its 18-connected
neighbourhood, overlaps with at least three, or more than
50%, of the ground truth lesion voxels. Insufficient overlap
results in a false negative (FN), and candidate lesions of 3 or
more voxels that do not overlap with a ground truth lesion
are counted as false positives (FP). The TPR (= %)
and FDR (= %ﬁﬂp) are then calculated at the lesion level
and are used to plot receiver operating characteristic (ROC)
curves. Given that MS lesions vary greatly in size, the system
performance is evaluated on lesions grouped into three size
bins: small (3-10 vox), medium (11-50 vox), and large (51+
VOX).

Quantitative evaluation (ROC curve of TPRvsFDR) of RS-
Net against R-Net for FLAIR and T2 synthesis by replacing
real MR sequence with synthesized MR sequence in S-Net is
given in Figf] and Fig{5] From these figures we can see that
RS-Net performs better compared to R-Net for all lesions. This
also holds true for all individual lesion size ROC curves. Value
of TPR at 0.2 FDR (the clinical operating point of interest)
is given in Table@ From this table, we can see that RS-
Net synthesized MR sequences (FLAIR or T2) consistently
gives better performance compared to R-Net synthesized MR
sequence for all lesion size. This shows that performing
synthesis and segmentation together gives better performance
compared to only synthesizing the missing MR sequences.
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Fig. 4: Comparison of T2 lesion detection results based on S-Net (Red) for FLAIR synthesis, where FLAIR MR input image is
replaced by its corresponding synthesized MR volume generated by either RS-Net (Blue) or R-Net (Yellow). Here, Receiver-
operating characteristic (ROC) curves are plotted, illustrating TPR (true positive rate) vs. FDR (false detectionrate) across all
lesions (Top Left), large lesions (Top Right), medium lesions (Bottom Left) and small lesions (Bottom Right).
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Fig. 5: Comparison of T2 lesion detection results based on S-Net (Red) for T2 synthesis, where T2 MR input image is replaced
by its corresponding synthesized MR volume generated by either RS-Net (Blue) or R-Net (Yellow). Here, Receiver-operating
characteristic (ROC) curves are plotted, illustrating TPR (true positive rate) vs. FDR (false detectionrate) across all lesions
(Top Left), large lesions (Top Right), medium lesions (Bottom Left) and small lesions (Bottom Right).



FLAIR synthesis T2 synthesis
All Large | Med. | Small All Large | Med. | Small
All Real sequences (4) 0.740 | 0.999 | 0.970 | 0.360 | 0.740 | 0.999 | 0.970 | 0.360
3 Real + 1 R-Net synthesized sequences 0.695 | 0998 | 0.952 | 0.300 | 0.705 | 0.990 | 0.925 | 0.350
3 Real + 1 RS-Net synthesized sequences | 0.715 | 0.999 | 0.960 | 0.315 | 0.720 | 0.998 | 0.945 | 0.365

TABLE V: Comparison of TPR at 0.2 FDR for different lesions sizes for RS-Net synthesized and R-Net synthesized MR

sequences (FLAIR and T2) against Real sequences.

IV. CONCLUSIONS

In this paper, a full resolution 3D end-to-end CNN was
developed for the task of MR volume synthesis in the presence
of brain tumours. The network was trained for the concurrent
tasks of synthesizing a missing MRI sequence and tumour
sub-tissue segmentation. Experimental results on BraTS 2015
challenge dataset indicated that the proposed method outper-
forms all previous methods in terms of traditional evaluation
metrics like PSNR and SSIM. The quality of the synthesized
images was further evaluated by assessing their effects on the
performance in independent tumour segmentation experiments.
Experiments on the BraTS 2017 challenge dataset indicated
that multi-task learning helps in synthesizing high quality
volumes over synthesis alone particularly in more challenging
contexts (i.e. FLAIR and Tlce). Evaluation on downstream
segmentation/detection task for brain tumour / Multiple Scle-
sions patient indicated that real MRIs can be replaced with
synthesized T1, T2, and FLAIR volumes with minimum
degradation in segmentation accuracy, whereas synthesizing
Tlce is still too challenging. However, uncertainty measure
based on Monte Carlo dropout was shown to be helpful in
communicating the confidence in the synthesis results, which
will be essential for their adoption by clinicians and down-
stream automatic methods. The code for the proposed method
is available here: https://github.com/RagMeh11/RS-Net.
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