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(1) Introduction (2) Proposed Framework

Lt' Sequence of inference tasks in a medical image analysis pipeline
> Registration

> Skull-Stripping inference inference inference
> Segmentation ... Task-1 :> Task-2 :> Task-3 :>

[2* Errors in deterministic output can accumulate over sequential tasks Network |ucerany| Network "™ Network uncertainty O O Q
»* Hypothesis: Performance of the downstream task can be improved :> :> :>

by propagating uncertainty (e.g. MC-Dropout [1] ) across sequential

tasks

(3) MS T2 Lesion Segmentation/Detection Pipeline (4) Brain Tumour Segmentation Pipeline

Multi-modal Multi-modal 6
Input Input
Lesiqn S Multi-class
BU-Net [2] U-Net [3] Detection RS-Net [4] U-Net [3] Tumour Segmentation
Inference L esion : —_— Inference MR ; ) S
L asioh Segmentation Lesion Inference Modality Synthesis Tumour Inference |

. Segmentation / Svnthesi _ S tati 4

Segmentation | yncertainty Detection yntnesis Uncertainty  — egmentaton :
[1] I [1] l 4

Synthesis
Uncertainty

Segmentation
Uncertainty

*» Dataset: *+ Dataset:
> Proprietary multisite, multi-scanner clinical relapsing-remitting > Brain Tumour Segmentation (BraTS) 2018 [5] challenge dataset
MS (RRMS) trials > Multi-modal MRI (T1, T2, FLAIR, and T1ce)
> 5800 multi-modal MRI (T1, T2, FLAIR, and PD) m BraTS 2018 Training set to train and validate RS-Net [4] and 3D
m 40% of the available data to train BU-Net [2] U-Net [3] (285 patients)
m 50% of the remaining data to train 3D U-Net [3] m BraTS 2018 Validation set (held-out) to test 3D U-Net (66
m 10% held-out to test 3D U-Net [3] patients)
¢ Evaluation Metric: ROC curves for lesion detection at various size *» Evaluation Metric: Dice scores for three different tumour subtypes:
> Segmentation converted into detection with connected enhancing tumour (DE [J), whole tumour (DT [JEN), and tumour core
component analysis (DCONW) [5]
< Quantitative Results: < Quantitative Results:
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** Qualitative Results: ** Qualitative Results:
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(5) Conclusion

** Proposed a general deep learning framework for the propagation of uncertainty across a sequence of inference tasks within a medical image
analysis pipeline for improved inference

¢ Evaluation on two different contexts of MS T2 lesion segmentation/detection and Brain Tumour segmentation

* 2-10% improvement for both tasks on their respected quantitative measures

¢ Clearly visible qualitative improvement

¢ Future work will explore how to properly develop a complete end-to-end system that includes uncertainty propagation across the inference
modules
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