Propagating Uncertainty Across Cascaded Medical Imaging Tasks

for Improved Deep Learning Inference

Raghav Mehta¹, Thomas Christinck¹, Tanya Nair¹, Paul Lemaitre¹, Douglas Arnold^{2,3}, and Tal Arbel¹

¹ Centre for Intelligent Machines, McGill University, Montreal, Canada ² Montreal Neurological Institute, McGill University, Montreal, Canada ³ NeuroRx Research, Montreal, Canada

Intelligent Machines

McGill

(1) Introduction

- Sequence of inference tasks in a medical image analysis pipeline
 - > Registration
 - Skull-Stripping
 - Segmentation ...
- Errors in deterministic output can accumulate over sequential tasks **
- Hypothesis: Performance of the downstream task can be improved by **propagating uncertainty** (e.g. MC-Dropout [1]) across sequential tasks

(2) Proposed Framework

(3) MS T2 Lesion Segmentation/Detection Pipeline

(4) Brain Tumour Segmentation Pipeline

Dataset:

- > Proprietary multisite, multi-scanner clinical relapsing-remitting MS (RRMS) trials
- > 5800 multi-modal MRI (T1, T2, FLAIR, and PD)
 - 40% of the available data to train BU-Net [2]
 - 50% of the remaining data to train 3D U-Net [3]
 - 10% held-out to test 3D U-Net [3]
- **Evaluation Metric:** ROC curves for lesion detection at various size
 - Segmentation converted into detection with connected component analysis

- Dataset:
 - Brain Tumour Segmentation (BraTS) 2018 [5] challenge dataset
 - \succ Multi-modal MRI (T1, T2, FLAIR, and T1ce)
 - BraTS 2018 Training set to train and validate RS-Net [4] and 3D U-Net [3] (285 patients)
 - BraTS 2018 Validation set (held-out) to test 3D U-Net (66 patients)
- **Evaluation Metric**: Dice scores for three different tumour subtypes: enhancing tumour (DE], whole tumour (DT **]**, and tumour core (DC 🗌 🗖) [5]

Quantitative Results:

Qualitative Results:

Quantitative Results:

	T1ce synthesis			FLAIR synthesis		
	DT	DC	DE	DT	DC	DE
real(3) sequences	87.17	50.25	26.89	83.27	73.91	71.07
real(3)+synthesized sequences	86.72	52.80	27.35	84.56	76.72	72.89
real (3) + synthesized + uncertainty	88.20	57.29*	32.86*	85.84*	79.25*	74.51*

(*) indicates statistically significant ($p \le 0.05$) differences between second and third row.

Qualitative Results:

(5) Conclusion

- Proposed a general deep learning framework for the propagation of uncertainty across a sequence of inference tasks within a medical image analysis pipeline for improved inference
- Evaluation on two different contexts of MS T2 lesion segmentation/detection and Brain Tumour segmentation
- **2-10% improvement** for both tasks on their respected **quantitative** measures
- Clearly visible qualitative improvement
- * Future work will explore how to properly develop a complete end-to-end system that includes uncertainty propagation across the inference modules

 Reference: Y. Gal, Z. Ghahramani.: "Dropout as a Bayesian approximation: representing model uncertainty in deep learning", ICML 2016 T. Nair, et al.: "Exploring uncertainty measures in deep networks for multiple sclerosis lesion detection and segmentation", MICCAI 2018 O. Cicek, et al.: "3D U-Net: learning dense volumetric segmentation from sparse annotation", MICCAI 2016 R. Mehta, and T. Arbel: "RS-Net: regression-segmentation 3D CNN for synthesis of full resolution missing brain MRI in the presence of tumours", SASHIMI 2018 S. Bakas, et al.: "Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge", arXiv preprint arXiv:1811.02629 (2018) 	Acknowledgment: This work was supported by a Canadian Natural Science and Engineering Research Council (NSERC) Collaborative Research and Development Grant (CRDPJ 505357 - 16), Synaptive Medical, the Canadian NSERC Discovery and CREATE grants, and an award from the International Progressive MS Alliance (PA-1603-08175).
--	---

