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Machme Learning and Medical Imagmg

Machine learning (ML) in medical imaging has HUGE potential for assisting in:
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e Wide variety of successful ML frameworks for segmentation,
classification in medical imaging
e However, resulting approaches have not yet been widely integrated into
real clinical practice!
o Why is that?



\\\/Open Problem: ML in Medical Imaging

e Most ML models can make mistakes

False negatives

| can’t
trust this
model.

False positives




~ Solution: ML in Medical Imaging

e Trust can be build with the notion of uncertainties associated with the
model output

/" The model is
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K some areas,
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| will review
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Thesis Contributions
e Uncertainty aware medical image analysis framework
o Uncertainty Evaluation Score
Ground Truth Prediction Uncertainty

Mehta et al. “QU-BraTS: MICCAI BraTS 2020 Challenge on Quantifying Uncertainty in Brain Tumor Segmentation - Analysis
of Ranking Scores and Benchmarking Results”, Journal of Machine Learning for Biomedical Imaging (MELBA) 2022.
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Thesis Contributions

e Uncertainty aware medical image analysis framework
o Uncertainty propagation across cascade of inference task

inference inference inference

— — — Downstream
Task-1 Task-2 Task-3 task of

uncertaintg; uncertaintg; uncertaint; | nte re St

Mehta et al. “Propagating Uncertainty Across Cascaded Medical Imaging Tasks for Improved Deep Learning Inference”,
IEEE Transactions on Medical Imaging (TMI) journal 2022.
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Thesis Contributions

e Uncertainty aware medical image analysis framework
o Fairness and Uncertainty

aaaaaaaaaaaaaaaaaaaaaaaaaaaa ] fYyine 2

Al skin cancer diagnOSES risk b@ing less Gender lmbalance in medical imaging
accurate for dark Skin = Stlldy datasets produces biased classifiers for

computer-aided diagnosis
Agostina . Larrazabal, Nicolds Nieto, Victoria Petersg «1, and Enzo Ferrante @ © Ay Info & Affiliatior

Research finds few image databases available to develop iy A L DS sy Sl 0 s A 9 205 o Pk Ok ;261
technology contain details on ethnicity or skin type Sy 26, 2020 | 172 23 12892:1255.| igptididergsetutcr g

(a) Male (b) Female

Mehta et al. “Evaluating the Fairness of Deep Learning Uncertainty Estimates in Medical Image Analysis”, Medical
Imaging and Deep Learning (MIDL) conference 2023.
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Thesis Contributions

e Uncertainty aware medical image analysis framework

o Information Gain Active Learning
___Performance
Threshold

Active Learning Sample Selection
. ]
. L
. \;J N\
I o ___ Annotate for : - -
Present———>» Q s o) Training Predict—> ) A

Unlgb:elled Hondiirs Intermediate Model Trained Model Automatic Predictions
ata

Mehta et al. “Information Gain Sampling for Active Learning in Medical Image Classification”, Uncertainty and Safe
Utilization (UNSURE) workshop at International conference on Medical Image Computing and Computer Assisted
Intervention (MICCAI) 2022. 9
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Uncertamty Evaluation

Mehta et al. “QU-BraTS: MICCAI BraTS 2020 Challenge on Quantifying Uncertainty in Brain Tumor Segmentation -

Analysis of Ranking Scores and Benchmarking Results”, Journal MELBA 2022. 10



Uncertainty
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B rain Tumour Segmentation
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B rain Tumour Segmentation

Confident Predictions =) Correct Predictions

P Incorrect Predictions =) Highly Uncertain

/" The model is
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QU-BraTS

e BraTS 2020 Challenge

Uncertainty Ranking
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Uncertamty Propagation

Sor

Mehta et al. “Propagating Uncertainty Across Cascaded Medical Imaging Tasks for Improved Deep Learning Inference”,
IEEE Transactions on Medical Imaging (TMI) journal 2022.
16
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Uncertainty Propagation

e Maedical Image Analysis Pipeline

Survival
Prediction /
Disease
Prognosis

Tumour
Segmentation

Multi-modal Skull Intensity
Registration Stripping Normalization

17
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Uncertainty Propagation

e Hypothesis: We can improve inference on the downstream task of interest
by propagating uncertainty estimated for the prior tasks

inference inference inference

— — — Downstream
Registration Skull Stripping Segmentation task of

uncertaintg; uncertaintg; uncertaint; | nte re St
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Uncertainty Propagation

e Experimentation:
a. Brain Tumour Segmentation Pipeline
b. MS T2 Lesion Segmentation/Detection Pipeline
c. Alzheimer’s Disease Clinical Score Prediction Pipeline

Multi-modal 6
Input
IiN Multi-class MR Input BU-Net . 3D ResNet-34
| RS-Net U-Net Tumour Segmentation s ~ nierence  Hippocampus mmp
A Inference N Se tati
—_— MR - . gmentation . 9
. Synthesis e gy Hippocampus Clinical Score |'nference  ADAS-13 and
Modalit Y Tumour Inference ) (&8 s : : MMSE score
[e— y A L egmentation | yncertainty Regression prediction
Synthesis Uncertainty Segmentation > 3 =
.~ U
. Segmentation
Synthesis Uncertainty
Uncertainty
C.
a.
Multi-modal
Input

Lesion
U-Net Detection

BU-Net
Inference -—)

| | Lesion
T . Segmentation Lesion Inference IS )
- Lesion Segmentation / 3 CE
= I Segmentation | uncertainty Detection \
.- |
19
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Uncertainty Propagation

e Experimentation:
a. Brain Tumour Segmentation Pipeline
b. MS T2 Lesion Segmentation/Detection Pipeline
c. Alzheimer’s Disease Clinical Score Prediction Pipeline

Multi-modal 6
Input
IiN Multi-class MR Input BU-Net . 3D ResNet-34
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Uncertainty Propagation

e Brain Tumour Segmentation
o Availability of different MR sequences improve tumour segmentation 2°

Ground Truth

25 Havaei et al. “HeMIS: Hetero-modal image segmentation.”, MICCAI 2016 21
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Uncertainty Propagation

e Brain Tumour Segmentation
o Availability of different MR sequences improve tumour segmentation 2°

Ground Truth

25 Havaei et al. “HeMIS: Hetero-modal image segmentation.”, MICCAI 2016 22
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Uncertainty Propagation

o

e Brain Tumour Segmentation
o Synthesizing missing (unavailable) sequence can help
m Clinicians to review

m Improve downstream tumour segmentation task 2°

~

26 van Tulder et al. “Why does synthesized data improve multi-sequence classification?”, MICCAI 2016 23



e Brain Tumour Segmentation

Real

24



Uncertainty Propagation

e Brain Tumour Segmentation

T1 T2 T1e FLAIR

Real
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Uncertainty Propagation

e Brain Tumour Segmentation

Real

Synthesis

26



e Brain Tumour Segmentation

Real

Synthesis

Uncertainty

EEEEEEEEE
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e Brain Tumour Segmentation

Multi-modal
Input

RS-Net

Modality
Synthesis

Inference

Uncertainty

74
Uncertainty Propagation

MR —
Synthesis

.
Synthesis
Uncertainty

U-Net

Tumour
Segmentation
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Multi-class

Tumour Segmentation
.

Inference
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Segmentation
with synthe5|sed

Synthesued

e Brain Tumour Segmentation

m Edema
m Necrotic Core + Non-Enhancing ‘
Tumour

29
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M\\Uncertainty PropagatiOn

Segmentation
with synthe5|sed

Synthe5|zed

e Brain Tumour Segmentation

m Edema
m Necrotic Core + Non-Enhancing ‘
Tumour

. Segmentation
Synthesis with synthesised
Uncertainty MR + Uncertainty
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Mehta et al. “Evaluating the Fairness of Deep Learning Uncertainty Estimates in Medical Image Analysis”, Medical
Imaging and Deep Learning (MIDL) conference 2023.
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Fairness and Uncertainty

1. Brain Tumour Segmentation
2. Skin Lesion Classification
3. Alzheimer’s Disease Clinical Score Regression

32
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Fairness and Uncertainty

1. Brain Tumour Segmentation
2. Skin Lesion Classification
3. Alzheimer’s Disease Clinical Score Regression
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Falrness

Partition dataset into subgroups based

on a sensitive attribute (Ex. Sex) Calculate Metric
of Interest
‘ ‘ (Ex. Dice)
ak A A A AN for each .
subgroups 0 3
AAA J am O
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Difference in
—> Performance

(0.7 - 0.3 = 0.4)
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P7{{I\

34



CENTRE For
INTELLIGENT
MACHINES

PVG

%
Fairness - Brain Tumour Segmentation

o Network: Whole Tumour Segmentation

0 U - Net B Tumour Size >= 7000 mi3 [l Tumour Size < 7000 mI3

92

e Sensitive Attribute: Tumour Size

o Divide into two subgroups %
e >=7000mL 88
e <7000 ml3 N
84
e Popular Fairness mitigation 5 ..
ML Methods: 50

Baseline (ERM) Data Balancing GroupDRO

o Baseline (ERM)
o Data balancing
o GroupDRO
35
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N\Fairness and Uncertainty
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Mehta et al. “Information Gain Sampling for Active Learning in Medical Image Classification”, Uncertainty and Safe
Utilization (UNSURE) workshop at International conference on Medical Image Computing and Computer Assisted
Intervention (MICCAI) 2022.
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" Challenges: ML in Medical Imaging

e Maedical Image Analysis
o Requires access to clinicians for data annotation
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Requesters have tasks they MTurk Marketplace Workers want to earn
need to be completed money and work

on interesting tasks
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Uncertainty Based Sample Selection

Unlabeled
Dataset

Labeled
Dataset
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~ Active Learning

Uncertainty Based Sample Selection

Unlabeled
Dataset

Labeled
Dataset
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“Active Learning

Uncertainty Based Sample Selection
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Active Learning

e Information Gain (IG)
o IG (X; Y=y) = H(X) - H(X]Y=y)

45
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Active Learning

Information Gain Sampling for AL

e Select samples with maximum IG = H1 - H2

Requires
many simplification assumption
and
design choices

46
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Active Learning

e Datasets:
o  Multi-class Diabetic Retinopathy (DR) disease
classification
e Evaluation Metric:

o ‘macro’ Area Under the Receiver Operating
Characteristic Curve (ROC AUC)

47



CENTRE For
INTELLIGENT
9 MACHINES

/4 PVG

Active Learning

e Results
DR Dataset
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Trustworthy Models

Uncertainty
Quantification
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Uncertainty
Quantification
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Backpropog Grad-CAM

Interpretability
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