

Propagating Uncertainty Across Cascaded Medical Imaging Tasks For Improved Deep Learning Inference

Raghav Mehta ^{1*}, Thomas Christinck ^{1*}, Tanya Nair ¹, Paul Lemaitre ¹, Douglas L. Arnold ^{2,3}, and Tal Arbel ¹

1 Centre for Intelligent Machines, McGill University, Montreal, Canada 2 Montreal Neurological Institute, McGill University, Montreal, Canada 3 NeuroRx Research, Montreal, Canada

UNSURE 2019: Uncertainty for Safe Utilization of Machine Learning in Medical Imaging

• Medical Image analysis pipeline performs sequence of inference task before the task of interest

- Medical Image analysis pipeline performs sequence of inference tasks before the task of interest
- Ex. Multiple Sclerosis (MS) disease activity prediction ¹

¹ Sepahvand et al. "CNN Prediction of Future Disease Activity for Multiple Sclerosis Patients from Baseline MRI and Lesion Labels.", Brainlesion 2018. ² Fan et al., "Adversarial learning for mono-or multi-modal registration.", Medical image analysis 2019.

³ Kleesiek et al. "Deep MRI brain extraction: a 3D convolutional neural network for skull stripping.", NeuroImage 2016.

⁴ Nair et al., "Exploring uncertainty measures in deep networks for multiple sclerosis lesion detection and segmentation.", Medical Image Analysis 2019.

- Deep Learning based solutions provide only deterministic output
- Errors can accumulate over sequence of tasks
- This can hinder downstream task

¹ Sepahvand et al. "CNN Prediction of Future Disease Activity for Multiple Sclerosis Patients from Baseline MRI and Lesion Labels.", Brainlesion 2018. ² Fan et al., "Adversarial learning for mono-or multi-modal registration.", Medical image analysis 2019.

³ Kleesiek et al. "Deep MRI brain extraction: a 3D convolutional neural network for skull stripping.", NeuroImage 2016.

⁴ Nair et al., "Exploring uncertainty measures in deep networks for multiple sclerosis lesion detection and segmentation.", Medical Image Analysis 2019.

- Deep Learning based solutions provide only deterministic output
- Errors can accumulate over sequence of tasks
- This can hinder downstream task

¹ Sepahvand et al. "CNN Prediction of Future Disease Activity for Multiple Sclerosis Patients from Baseline MRI and Lesion Labels.", Brainlesion 2018. ² Fan et al., "Adversarial learning for mono-or multi-modal registration.", Medical image analysis 2019.

³ Kleesiek et al. "Deep MRI brain extraction: a 3D convolutional neural network for skull stripping.", NeuroImage 2016.

⁴ Nair et al., "Exploring uncertainty measures in deep networks for multiple sclerosis lesion detection and segmentation.", Medical Image Analysis 2019.

• MS T2 lesion segmentation using Bayesian U-Net (BU-Net)⁴

⁴ Nair et al., "Exploring uncertainty measures in deep networks for multiple sclerosis lesion detection and segmentation.", Medical Image Analysis 2019. (3)

(4)

Introduction

- MS T2 lesion segmentation using Bayesian U-Net (BU-Net)⁴
 - \circ $\;$ Uncertainty Estimation using Monte-Carlo Dropout (MC-Dropout) 5

(4)

Introduction

- MS T2 lesion segmentation using Bayesian U-Net (BU-Net)⁴
 - \circ $\;$ Uncertainty Estimation using Monte-Carlo Dropout (MC-Dropout) 5

(4)

Introduction

- MS T2 lesion segmentation using Bayesian U-Net (BU-Net)⁴
 - \circ $\;$ Uncertainty Estimation using Monte-Carlo Dropout (MC-Dropout) 5

(5)

Introduction

- MS T2 lesion segmentation using Bayesian U-Net (BU-Net)⁴
 - Uncertainty Estimation using Monte-Carlo Dropout (MC-Dropout)⁵

Lesion

- Bayesian Deep Learning provides uncertainty estimation
 - \circ Monte-Carlo (MC) Dropout 5
 - Variational Dropout ⁶
 - Probabilistic U-Net⁷
 - $\circ \quad \text{Deep Ensemble}\,{}^8$
 - o ...

⁵ Gal and Ghahramani, "Dropout as a bayesian approximation: Representing model uncertainty in deep learning.", ICML 2016.

- ⁶ Kingma et al., "Variational dropout and the local reparameterization trick.", NeurIPS 2015.
- ⁷ Kohl et al., "A probabilistic u-net for segmentation of ambiguous images.", NeurIPS 2018.
- ⁸ Lakshminarayanan et al., "Simple and scalable predictive uncertainty estimation using deep ensembles.", NeurIPS 2017.

- Applied to different medical image analysis context contexts
 - \circ MS T2 lesion segmentation and detection 4
 - \circ Lung cancer lesion segmentation ⁹
 - Modality Synthesis ¹⁰
 - dMRI Super-Resolution ¹¹
 - \circ Brain structure segmentation ¹²
 - \circ MR registration ¹³
 - Diabetic Ratinopathy Screening ¹⁴
 - o ...

- ⁹ Hu et al., "Supervised uncertainty quantification for segmentation with multiple annotations.", MICCAI 2019.
- ¹⁰ Mehta et al., "RS-Net: Regression-Segmentation 3D CNN for Synthesis of Full Resolution Missing Brain MRI in the Presence of Tumours.", SASHIMI 2018.
- ¹¹ Tanno et al., "Bayesian Image Quality Transfer with CNNs: Exploring Uncertainty in dMRI Super-Resolution.", MICCAI 2017.
- ¹² Roy et al. "Bayesian QuickNAT: Model uncertainty in deep whole-brain segmentation for structure-wise quality control.", NeuroImage 2019.
- ¹³ Dalca et al., "Unsupervised Learning of Probabilistic Diffeomorphic Registration for Images and Surfaces.", Medical Image Analysis 2019.
- ¹⁴ Leibig et al. "Leveraging uncertainty information from deep neural networks for disease detection.", Scientific reports 2017

⁴ Nair et al., "Exploring uncertainty measures in deep networks for multiple sclerosis lesion detection and segmentation.", Medical Image Analysis 2019

- Applied to different medical image analysis context contexts
 - \circ MS T2 lesion segmentation and detection 4
 - Lung cancer lesion segmentation ⁹
 - Modality Synthesis ¹⁰
 - dMRI Super-Resolution ¹¹
 - \circ Brain structure segmentation ¹²
 - \circ MR registration ¹³
 - Diabetic Ratinopathy Screening¹⁴
 - o ...
- Papers report that
 - \circ Areas where network is prone to error have higher uncertainty ^{10,11,13}
 - \circ Improved performance when the network output is evaluated on its most certain predictions ^{4, 14}

⁴ Nair et al., "Exploring uncertainty measures in deep networks for multiple sclerosis lesion detection and segmentation.", Medical Image Analysis 2019

⁹ Hu et al., "Supervised uncertainty quantification for segmentation with multiple annotations.", MICCAI 2019.

¹⁰ Mehta et al., "RS-Net: Regression-Segmentation 3D CNN for Synthesis of Full Resolution Missing Brain MRI in the Presence of Tumours.", SASHIMI 2018.

¹¹ Tanno et al., "Bayesian Image Quality Transfer with CNNs: Exploring Uncertainty in dMRI Super-Resolution.", MICCAI 2017.

¹² Roy et al. "Bayesian QuickNAT: Model uncertainty in deep whole-brain segmentation for structure-wise quality control.", NeuroImage 2019.

¹³ Dalca et al., "Unsupervised Learning of Probabilistic Diffeomorphic Registration for Images and Surfaces.", Medical Image Analysis 2019.

¹⁴ Leibig et al. "Leveraging uncertainty information from deep neural networks for disease detection.", Scientific reports 2017

Can we use this uncertainty to improve downstream task?

Proposed Framework

• Leveraging Uncertainty for improved inference in cascaded medical image analysis task

Proposed Framework

• Leveraging Uncertainty for improved inference in cascaded medical image analysis task

• Task: Accurate MS T2 lesion segmentation/detection

(10)

MS T2 Lesion Segmentation/Detection Pipeline

- Task: Accurate MS T2 lesion segmentation/detection
- Task-1 Network: Bayesian U-Net (BU-Net)⁴ for lesion segmentation
- Task-2 Network: 3D U-Net¹⁵ for segmentation
- MC-Dropout ⁵ to estimate uncertainty in BU-Net

- ⁴ Nair et al., "Exploring uncertainty measures in deep networks for multiple sclerosis lesion detection and segmentation.", Medical Image Analysis 2019.
- ⁵ Gal and Ghahramani, "Dropout as a bayesian approximation: Representing model uncertainty in deep learning.", ICML 2016.
- ¹⁵ Cicek et al., "3D U-Net: learning dense volumetric segmentation from sparse annotation.", MICCAI 2016.

- Dataset
 - Proprietary multi-site, multi-scanner patient MRI from 2 clinical trials of patients with relapsing-remitting MS (RRMS)
 - 5800 multi-modal MRI (T1,T2, FLAIR, PD)
 - Expert T2 lesion labels
 - 40% of the available data used to train/validate BU-Net
 - 50% of the remaining to train 3D U-Net
 - 10% to test 3D U-Net

(a) T1w

(b) T2w

(c) FLAIR

(d) PDW

(e) Expert labels

• Evaluation Metric

- \circ Accurate detection of MS T2 lesion is of interest
- Segmentation converted into lesion detection with connected component analysis
- \circ Lesions divided into 3 categories based on size.
 - Small (3-10 voxels) --- 40% of total lesions are small
 - Medium (11-50 voxels)
 - Large (50+ voxels)
- Receiver operating characteristic (ROC) curves for each lesion size and for all lesions combined
 - Area under the curve (AUC) of ROC curve
 - True Positive Rate (TPR) at False detection rate (FDR) of 0.2

- Baseline-1
 - No Task-1 Network (BU-Net)

• Baseline-2

• Only inference from Task-1 Network (BU-Net) is propagated to Task-2 Network (3D U-Net)

• Quantitative Results

• Quantitative Results

• Qualitative Results

• Task: Accurate multi-class tumour segmentation in case of missing modality

(17)

Brain Tumour Segmentation Pipeline

- Task: Accurate multi-class tumour segmentation in case of missing modality
- Task-1 Network: Regression-Segmentation Network (RS-Net)¹⁰ for modality synthesis
- Task-2 Network: 3D U-Net¹⁵ for multi-class brain tumour segmentation
- MC-Dropout ⁵ to estimate uncertainty in RS-Net

¹⁰ Mehta et al., "RS-Net: Regression-Segmentation 3D CNN for Synthesis of Full Resolution Missing Brain MRI in the Presence of Tumours.", SASHIMI 2018.

- ⁵ Gal and Ghahramani, "Dropout as a bayesian approximation: Representing model uncertainty in deep learning.", ICML 2016.
- ¹⁵ Cicek et al., "3D U-Net: learning dense volumetric segmentation from sparse annotation.", MICCAI 2016.

• Dataset

- \circ
Brain Tumour Segmentation (BraTS) 2018 16 challenge dataset
- Multi-class tumour segmentation ground truth
 - Edema
 - Enhancing Tumour
 - Non-enhancing core
- Multi-modal MRI (T1, T2, FLAIR, and T1ce)
 - BraTS 2018 Training set to train and validate RS-Net and 3D U-Net (285 patients)
 - BraTS 2018 Validation set (held-out) to test 3D U-Net (66 patients)

¹⁶ S. Bakas, et al.: "Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge", arXiv preprint arXiv:1811.02629 (2018)

• Evaluation Metric ¹⁶

- Dice scores for three different tumour subtypes:
 - enhancing tumour (DE
 - whole tumour (DT □ ■)
 - tumour core (DC])

$$Dice(G,P) = \frac{2|GP|}{|G|+|P|}$$

where |G| denotes the number of positive elements in the binary segmentation G and |GP| is the number of shared positive elements by G and P. Dice $\in [0, 1]$. A higher Dice value indicates a better segmentation performance.

¹⁶ S. Bakas, et al.: "Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge", arXiv preprint arXiv:1811.02629 (2018)

- Baseline-1
 - No Task-1 Network (RS-Net): No synthesis of missing modality

- Baseline-2
 - Only inference from Task-1 Network (RS-Net) is propagated to Task-2 Network (3D U-Net)

• Uncertainty in Synthesis (RS-Net)¹⁰

¹⁰ Mehta et al., "RS-Net: Regression-Segmentation 3D CNN for Synthesis of Full Resolution Missing Brain MRI in the Presence of Tumours.", SASHIMI 2018.

• Quantitative Results

	T1ce synthesis			
	DT	DC	DE	
real(3) sequences	87.17	50.25	26.89	
real(3)+synthesized sequences	86.72	52.80	27.35	
real(3)+synthesized+uncertainty	88.20	57.29*	32.86*	

(*) indicates statistically significant (p ≤ 0.05) differences between second and third row.

• Quantitative Results

				FLAIR synthesis		
				DT	DC	DE
real(3) sequences				83.27	73.91	71.07
real(3)+synthesized sequences				84.56	76.72	72.89
real(3)+synthesized+uncertainty				85.84*	79.25*	74.51*

(*) indicates statistically significant (p ≤ 0.05) differences between second and third row.

• Quantitative Results

	T1ce synthesis			FLAIR synthesis		
	DT	DC	DE	DT	DC	DE
real(3) sequences	87.17	50.25	26.89	83.27	73.91	71.07
real(3)+synthesized sequences	86.72	52.80	27.35	84.56	76.72	72.89
real(3)+synthesized+uncertainty	88.20	57.29*	32.86*	85.84*	79.25*	74.51*

(*) indicates statistically significant (p ≤ 0.05) differences between second and third row.

• Qualitative Results

Enhancing Tumour

Edema

Non Enhancing Core

Conclusion

- Proposed **a general deep learning framework** for the propagation of uncertainty across a sequence of inference tasks within a medical image analysis pipeline for improved inference
- Evaluation on two different contexts of MS T2 lesion segmentation/detection and Brain Tumour segmentation
- **2-10% improvement** for both tasks on their respected **quantitative** measures
- Clearly visible qualitative improvement
- Future work will explore how to properly develop a complete end-to-end system that includes uncertainty propagation across the inference modules

PROGRESSIVE MS ALLIANCE

CONNECT TO END PROGRESSIVE MS

• Implementation Details

- Task-1 Network: BU-Net⁴
- Task-1 Network uncertainty: Variance of 10 MC samples ⁵
- Task-2 Network: 3D U-Net¹⁵
 - 3 resolution U-Net
 - Linear Upsampling
 - Leaky-ReLU non-linear activation ¹⁶
 - Group Normalization ¹⁷
 - Equally weighted Sorensen-Dice loss ¹⁸ and binary cross-entropy loss
- \circ 18 connected component to convert segmentation to detection

- ¹⁵ Cicek et al., "3D U-Net: learning dense volumetric segmentation from sparse annotation.", MICCAI 2016.
- ¹⁶ Maas et al., "Rectifier nonlinearities improve neural network acoustic models.", ICML 2013.
- ¹⁷ Wu and He., "Group normalization.", In ECCV 2018.
- ¹⁸ Milletari et al., "V-net: Fully convolutional neural networks for volumetric medical image segmentation.", 3DV 2016

Brain Tumour Segmentation

• Implementation Details

- Task-1 Network: RS-Net ¹⁰
- Task-1 Network uncertainty: Variance of 20 MC samples ⁵
- Task-2 Network: 3D U-Net¹⁵
 - 4 resolution U-Net
 - Deconvolution ¹⁹
 - ReLU non-linear activation ²⁰
 - Instance Normalization²¹
 - Weighted categorical cross-entropy loss

¹⁰ Mehta et al., "RS-Net: Regression-Segmentation 3D CNN for Synthesis of Full Resolution Missing Brain MRI in the Presence of Tumours.", SASHIMI 2018
⁵ Gal and Ghahramani, "Dropout as a bayesian approximation: Representing model uncertainty in deep learning.", ICML 2016.

- ¹⁵ Cicek et al., "3D U-Net: learning dense volumetric segmentation from sparse annotation.", MICCAI 2016.
- ¹⁹ Zeiler et al., "Deconvolutional networks.", CVPR 2010
- ²⁰ Glorot et al., "Deep sparse rectifier neural networks", AISTATS 2011
- ²¹ Ulyanov et al., "Instance normalization: The missing ingredient for fast stylization.", arXiv preprint arXiv:1607.08022.